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Simulation is fundamental to science and technology

Largest supercomputers in the world (Nov 2019)

#1. “Summit” @ Oak Ridge: “A Sneak Peek at 19 Science Simulations for the Summit Supercomputer in 2019”

1. Evolution of the universe
2. Whole-cell simulation
3. Inside a nuclear reactor
4. Post-Moore’s Law graphene circuits
5. Formation of matter
6. Cell’s molecular machine
7. Unpacking the nucleus
8. Mars landing
9. Deep learning for microscopy

10. Elements from star explosions

11. Cancer data
12. Earthquake resilience for cities
13. Nature of elusive neutrinos
14. Extreme weather with deep learning
15. Flexible, lightweight solar cells
16. Virtual fusion reactor
17. Unpredictable material properties
18. Genetic clues in the opioid crisis
19. Turbulent environments

https://www.top500.org/lists/2019/11/
https://www.olcf.ornl.gov/2019/01/17/a-sneak-peek-at-19-science-simulations-for-the-summit-supercomputer-in-2019/


Simulation is fundamental to science and technology

Largest supercomputers in the world (Nov 2019)

#1. “Summit” @ Oak Ridge: “A Sneak Peek at 19 Science Simulations for the Summit Supercomputer in 2019”

#2 “Sierra” @ Lawrence Livermore: “[nuclear] simulation in lieu of underground testing”

#3 “Sunway TaihuLight” @ NSC, Wuxi: “simulated the Universe with 10 trillion digital particles”

#4 “Tianhe-2A” @ NSC, Guangzhou: “main application … is for computational fluid dynamics (CFD) ... aircraft simulations”

#5 “Frontera” @ TACC: “high-resolution climate simulations, molecular dynamics models with millions of atoms”

#6 “Piz Daint” @ CSCS: “simulate processes for projects in geophysics, materials science, chemistry, ... climate 
modeling”

#7 “Trinity” @ Los Alamos: “A trillion-particle simulation? No sweat for the Trinity supercomputer at Los Alamos”

(#8 “ABCI” @ AIST, Japan: not simulation, but deep learning)

#9  “SuperMUC-NG” @ Leibniz Supercomputing Centre: “Researchers Visualize the Largest Turbulence Simulation Ever”

#10 “Lassen” @ Lawrence Livermore: “The system is designated for unclassified simulation and analysis”

https://www.top500.org/lists/2019/11/
https://www.olcf.ornl.gov/2019/01/17/a-sneak-peek-at-19-science-simulations-for-the-summit-supercomputer-in-2019/
https://computing.llnl.gov/computers/sierra
https://www.wired.co.uk/article/china-simulate-universe-supercomputer
https://futurism.com/china-upgrades-most-powerful-supercomputer-in-the-world-hosts-it-in-defense-research-center
https://www.tacc.utexas.edu/-/frontera-named-5th-fastest-supercomputer-in-the-world
https://spectrum.ieee.org/computing/hardware/piz-daint-supercomputer-shows-the-way-ahead-on-efficiency
https://spectrum.ieee.org/computing/hardware/piz-daint-supercomputer-shows-the-way-ahead-on-efficiency
https://www.wired.com/story/this-bomb-simulating-us-supercomputer-broke-a-world-record/
https://www.hpcwire.com/2019/10/30/researchers-visualize-the-largest-turbulence-simulation-ever/
https://computing.llnl.gov/computers/lassen


Why learn simulation?

 Engineered simulators:

1. Substantial effort to build

2. Substantial resources to run

3. Only as accurate as the designer

4. Not always suitable for solving inverse 
problems



 Learned simulators:

1. Shared architectures 

2. Accuracy-efficiency trade off

3. As accurate as the available data

4. Gradient-based planning

5. Interpretable models!*

 Engineered simulators:

1. Substantial effort to build

2. Substantial resources to run

3. Only as accurate as the designer

4. Not always suitable for solving inverse 
problems

Why learn simulation?

*“Discovering Symbolic Models from Deep Learning with Inductive Biases”
Cranmer et al., NeurIPS 2020

https://arxiv.org/abs/2006.11287


Content

1. Graphics and engineering
2. Scientific turbulence
3. Global weather

Learning AI simulation for:

Big credit to all co-authors!



Learning simulation for graphics and engineering

● Focus on general principles behind the design
○ Applicable to other domains

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020) link
Alvaro Sanchez-Gonzalez*, Jonathan Godwin*, Tobias Pfaff*, et al. 
Video page: sites.google.com/view/learning-to-simulate

“Learning Mesh-Based Simulation with Graph Networks” (ICLR 2021)  link
Tobias Pfaff*, Meire Fortunato*, Alvaro Sanchez-Gonzalez*, Peter Battaglia
Video page: sites.google.com/view/meshgraphnets

“Inverse Design for Fluid-Structure Interactions using Graph Network Simulators” 
(NeurIPS 2022) link
Kelsey Allen*, Tatiana Lopez Guevara*, Kimberly Stachenfeld*, et al.
Video page: sites.google.com/corp/view/optimizing-designs

http://arxiv.org/abs/2002.09405
http://sites.google.com/view/learning-to-simulate
http://arxiv.org/abs/2010.03409
https://sites.google.com/view/meshgraphnets
https://proceedings.neurips.cc/paper_files/paper/2022/file/59593615e358d52295578e0d8e94ec4a-Paper-Conference.pdf
https://sites.google.com/corp/view/optimizing-designs


Water simulation (SPH)
“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020) 

Video page: sites.google.com/view/learning-to-simulate

http://sites.google.com/view/learning-to-simulate
https://docs.google.com/file/d/1O2D8mpxwvbgVn06gUNNW9BIoDtXEAwTh/preview


Water simulation (SPH)
“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020) 

Video page: sites.google.com/view/learning-to-simulate

https://docs.google.com/file/d/1O2D8mpxwvbgVn06gUNNW9BIoDtXEAwTh/preview
http://sites.google.com/view/learning-to-simulate


SPH MPM PBD

Multiple materials

Data from 3 distinct 
simulators:

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020) 
Video page: sites.google.com/view/learning-to-simulate

http://sites.google.com/view/learning-to-simulate


Cloth simulation (ArcSim)

● Triangular dynamic mesh 
● Lagrangian representation

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review) 
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1Puzo8nqueJyYmGFTfuE2zpdBpzCpZ6Jp/preview
https://sites.google.com/view/meshgraphnets


Structural dynamics (COMSOL)

● Tetrahedral mesh 
● Lagrangian representation
● Quasi-static simulation

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review) 
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1PJsky3flqjZVbHf97bYz3LWAGXSFr3H-/preview
https://sites.google.com/view/meshgraphnets


Incompressible fluids (COMSOL)

● Navier-Stokes 
● Eulerian representation

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review) 
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1tHdQvCbvCvDpkXEGaDgWqgLknotfDNpE/preview
https://sites.google.com/view/meshgraphnets


Aerodynamics (SU2)

● Navier-Stokes 
● Eulerian representation

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review) 
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1n43-gpya6xVEz4v4xyd-IFtskNjEq-g0/preview
https://sites.google.com/view/meshgraphnets


Why Graph Network based simulators?

● Adaptability
○ Same model → Vastly different materials and domains

● Data efficiency
○ < 1000 training trajectories

● Performance
○ Latest model: ~10 to 100 times faster than ground truth simulator

● Generalization



Graph Network-Based Simulators
“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020) 

Video page: sites.google.com/view/learning-to-simulate

Design principle: neural networks trained on small datasets are dumb, 
                            let’s give them some extra info!

Input Prediction 1

...

Prediction n

T1000

Prediction 2

T999

...

T0 T1

http://sites.google.com/view/learning-to-simulate


“If I have seen further it is by 
standing on the shoulders of giants.”

-Sir Isaac Newton-

Our Neural Networks should also have 
the knowledge of giants!

Inductive Biases



Physics-inspired 
inductive biases

“An inductive bias allows a learning algorithm to prioritize 
one solution (or interpretation) over another.” 

Mitchell, T. M.. The need for biases in learning generalizations. (1980)

Spatial 
equivariance

Pairwise 
interactions

Local 
interactions Superposition 

principle
Space 

homogeneity

Permutation equivariance

Differential 
equations



Graph Networks
Interaction Networks (Battaglia et al., 2016, NeurIPS) 

Graph Networks (Battaglia et al., 2016, arXiV)

A neural network that can predict properties of a graph

GN



Encoder

● Transform the inputs into a graph
○ Add connectivity with a certain radius R

R

Local 
(spatial) 

interactions



Processor: Deep Graph Network

● Increase range of communication Local 
interactions

After 1 MP steps After 2 MP steps After 3 MP steps After n MP steps 



Incompressible 
fluid

Structural mechanics Aerodynamics

Decoder and update

Quasistatic Eulerian Navier Stokes
Cloth simulationParticle-based fluids

Lagrangian Newtonian

Differential equations prior: 
add a cheap integrator!

xt+1 = xt + (xt - xt-1)+ NN(xt, vt)
Euler integrator:

https://docs.google.com/file/d/1IDk45syuptBVWxXNHl3etlUtbXnI6243/preview


Generalization to many more particles
“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020) 

Video page: sites.google.com/view/learning-to-simulate

http://sites.google.com/view/learning-to-simulate


Generalization to many more particles
“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020) 

Video page: sites.google.com/view/learning-to-simulate

https://docs.google.com/file/d/1YdsH6PlxNV4zQMk8XugEnYNi1QPvWzJg/preview
http://sites.google.com/view/learning-to-simulate


Generalization to different meshes

Training

Generalization

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review) 
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1dy-AAfcEyktIQGosM3BrpOnCZgrPHEh2/preview
https://sites.google.com/view/meshgraphnets


Generalization to larger meshes

Training:
2k nodes

Generalization:
>20k nodes

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review) 
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1JWfx63uOs0suNYjnprTe6iaicnQOQd_z/preview
https://sites.google.com/view/meshgraphnets


Inverse design - using a forward model
“Inverse Design for Fluid-Structure Interactions using Graph Network Simulators” 

(NeurIPS 2022) 
Video page: sites.google.com/corp/view/optimizing-designs

“Move mesh to get 
particles to purble 

points”

“Move ramps to to get liquid to yellow region”

“Maximize lift and 
minimize drag of the 

wing”

http://sites.google.com/corp/view/optimizing-designs


Bonus slide: interpretable graph networks

● “Discovering Symbolic Models from Deep Learning with Inductive Biases”
Cranmer et al., NeurIPS 2020

● Extract symbolic models from edge and node  functions of a GraphNet



“Learned Coarse Models for Efficient Turbulence Simulation” (ICLR 2022) 
Stachenfeld at al.*
Arxiv: arxiv.org/abs/2112.15275
Video page: sites.google.com/corp/view/learned-turbulence-simulators

Engineering Science

Classical numerical solvers are powerful but computationally expensive

Can fully-learned simulators capture complex, chaotic turbulence 
accurately at low-resolutions?

Forecasting

https://arxiv.org/abs/2112.15275
https://sites.google.com/corp/view/learned-turbulence-simulators


Model: Architecture



1D Kuramoto-Sivashinsky (KS) Equation

X Velocity Y Velocity PressureZ VelocityDensity

3D Mixing Layer Turbulence with Radiative Cooling
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X Velocity Y Velocity PressureZ VelocityDensity

3D Uniform Compressible Decaying Turbulence
X Velocity

X Velocity Y Velocity Vorticity
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2D Incompressible Turbulence
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Domain Generality

One model → 4 different domains
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Learned model timestep

Model can be trained to work on a 

large range of timesteps

Temporal Coarsening

1 2 4 8 16 32 64 128
Ground 
Truth 256

Trajectory error

For comparison the timestep of Athena++ at 128^3 resolution is ~0.125 → Timestep increase: 8x – 2000x

https://docs.google.com/file/d/1EYjVjJ-o78uWA_yTr0zwXPzAPiuFICfT/preview?resourcekey=0-oQl7GHIL-l2zDfh_0jjfyg


Goal: Transform global operational weather forecasting with ML
● More accurate and more efficient forecasts made by models learned directly from data.
● Improve downstream applications that rely on weather forecasts for the benefit of humanity.

Scientific objective: Predict whole-Earth’s surface & atmospheric weather, 10 days ahead, at 30 km resolution
Surface E-W wind Temperature @ 500 hPaSurface temperature

Difficulty and scale: A single atmospheric state is ~1GB worth of data.

“Learning skillful medium-range global weather forecasting” (                 2023) 
Lam at al.,
www.science.org/doi/10.1126/science.adi2336

https://www.science.org/doi/10.1126/science.adi2336


GraphCast v1.0: A learned simulator based on GNNs

● GraphCast takes a weather state as 
input, and is applied iteratively to roll out 
a forecast.

● Only 26M model parameters!

+ 6h

10 day 

+ 6h + 6h



HRES: 
Best operational 
model available 
(by ECMWF)

GraphCast v1.0 vs operational forecasts: RMSE

GraphCast better than HRES on 99.7% of all targets below the stratosphere

GraphCast (1 PufferFish) >100x faster than HRES (on a supercomputer)

GraphCast better RMSE 
than HRES by 10% 

Example: Geopotential at 500 hPa
Absolute performance      Relative performance



GraphCast v1.0 vs operational forecasts: Hurricane tracking

Hurricane Maria (2017):
● Most intense storm of 2017.
● Worst storm to ever hit Dominica, Saint Croix, Puerto Rico.
● ~$100B in damage. 3rd costliest storm on record.

HRES GraphCast

All hurricanes from 2018-2021



Severe weather

Credit: Mark Ross, Scientific American

‘Rivers in the sky’ transporting water vapor from tropics.
- GraphCast has ~24h advantage in predicting IVT

Predict when surface temperature will reach top 2% extremes 
- GraphCast dominates at long lead times.

Performance in extreme events is consistent with RMSE results.

Atmospheric riversExtreme heat

https://www.scientificamerican.com/article/better-atmospheric-river-forecasts-are-giving-emergency-planners-more-time-to-prepare-for-flooding/


GraphCast available to the world!

Traction in the community via real-time tests        ECMWF running GraphCast online

https://charts.ecmwf.int/products/graphcast_medium-t-z?base_time=202311010000&level=1000&projection=opencharts_europe&valid_time=202311010600


“GenCast: Diffusion-based ensemble forecasting for medium-range weather” (2023) 
Price at al.,
arxiv.org/abs/2312.15796

Probabilistic version of GraphCast: 
● Train as diffusion model

Region of interest

12h earlier 
forecast

5d earlier 
forecast

10d earlier 
forecast

Example ERA5 state 

2018-09-20 6pm

Specific humidity at 700 hPa

GraphCast
GenCast

Samples Sample Mean

Uncertainty 
as blurring!

Each sample 
is sharp!

Still captures 
uncertainty!

What do model predictions look like?

https://arxiv.org/abs/2312.15796


● AI for physical simulation is here to stay!

Conclusions

Thanks for your attention!

Question time?


