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• Computers:
• Historically, the word dates back as far as the 17th Century, 

• Referred to humans who carried out carried out calculations or computations.

• Modern (machine) computers provide advantage of humans of:
• Computers offer two principal advantages over humans:

• Correctness, and repeatability / reproducibility 
• Speed:

• For ‘simple’ and repetitive operations 
  (although modern techniques of machine learning are making complex tasks accessible for 
computers; e.g. chess, visual recognition tasks).

• Although - these are not guaranteed …  
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Programming Languages
• C++ and Python most prevalent within Particle Physics community

• C++ is rather stable over recent years

• TIOBE Index 

• Python replaced C as #1 ranking
in 2022

• #3 Java

• #4 C++
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Source: insights.stackoverflow 

C++

https://www.tiobe.com/tiobe-index/
https://insights.stackoverflow.com/trends?tags=java%2Cc%2Cc%2B%2B%2Cpython%2Cc%23%2Cvb.net%2Cjavascript%2Cassembly%2Cphp%2Cperl%2Cruby%2Cvb%2Cswift%2Cr%2Cobjective-c


Python
• Python: 

• Excellent as a scripting language:

• Easy to read and write (also easy to introduce typos, etc; Type Hints can help spot these).

• Slower than C++ (interpreted, versus compiled):

• Can call / leverage other languages (e.g C++ / fortran) when speed is required (numpy, numba, ROOT)

• In HEP:

• Used as the ‘glue’ within framework software to combine C++ code (e.g Athena, CMSSW)

• Recent evolution of using python at the ‘analysis stage’ of a physics analysis (e.g pyhf)
• PyHEP Workshops

• https://scikit-hep.org :

• Community-driven effort for creating an 
ecosystem for data analysis in Python
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https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://scikit-hep.org


C++
• Large and complicated language; many ways to accomplish same things:

• C (arrays, pointers, functions)
• Traditional C++ (new, delete, classes)

• Templates ( template class<T> )

• Modern C++ ( std::unique_ptr,  for (auto x: y) {} ) 

• Will find all of these approaches in large project codebases: (e.g. HEP experimental software frameworks);

• Can co-exist (for better, or worse …) 

• Evolving language; new standards every 3 years;

• C++11 standard introduced modern C++, (C++14 considered incremental, with C++17 and C++20 bringing 
additional functionality).

• C and C++ are probably the best-supported ways to write fast code
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Other languages
• Java, Javascript, C# and various languages with more domain-specific utility

• A few recent ‘newcomers’ attracting some attention:

• Go: ~ modern C (with some less complication)

• Rust: aims to be like a correct-by-default C++
• Better to avoid memory leak, buffer overwrites

• Julia: aims to be like a fast Python 
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Software Engineering
• Everything around the actual writing of code 

    (and distinct from the theoretical aspects of computer science)

• Use of sound engineering best practices, and encompasses at least: 

• Requirements gathering and specification definition
• Debugging

• Testing

• Packaging

• Documenting

• Operating environments
• Considerations around ongoing maintenance and evolution
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Term “Software Engineering” promoted by Margaret Hamilton, lead programmer for the Apollo Mission guidance computer



Testing for Correctness 
• Demonstrating an algorithm is correct with respect to its specification:

• Usually interested in functional correctness;

•  that for a given input for a computation the correct output is returned. 

• General approaches could be:
• Find version of the calculation (not an edge case) where the answer is known;

• Make changes that should not affect the answer and verify the result.

• Also try to test on edge-cases. 

• Important to test that code handles problematic cases correctly:

• e.g. passing in an incorrect type (e.g. python)
• Out-of-range values

• Invalid values (nan)

• Might be sufficient just to crash the code;

• Or handle any and all possible exceptions
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Debugging: Thoughts
• Brian Kernighan (C, Unix etc):

• The most effective debugging tool is still careful thought, 
coupled with judiciously placed print statements. 

• Everyone knows that debugging is twice as hard as writing a 
program in the first place. 
• So if you’re as clever as you can be when you write it, how will you ever debug it? 

• Rubber ducks and teddy bears: 

• Explain your problem to anyone – doesn’t need to be an expert

• Doesn’t even need to be a living entity; rubber ducks and teddy bears
• Draft and email for an expert, explaining what you have done / what you think is happening.

• – Documenting / explaining your thought process and problems found leads:

• to better understanding of the issue, and

• possibly its solution. 
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Debugging: Process
• Reproduce the problem; 

• document exact setup instructions (environment, command, extra software / settings)

• If necessary distill the problem to it’s simplest components:

• e.g could write a separate small program that generates the same errors

• Find the fix … 
• Establish that the fix has no undue side effect

 (e.g. that tests unrelated to the fix still gives expected results)

• Consider creating tests to make sure issue can’t reoccur (see later)
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Static analysis
• Static analysis (compared to Dynamic analysis) is the study / debugging of 

source code before executing the program.
• Many automated tools to help.

• Code review process with another human also important.

• Include these tools into your testing cycle (more later)
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• Python:

• Flake8 

• (Static analysis plus pep8 style 
guide)

• Vulture (find unused/unreachable code)
• Type hints: (introduced in python 3.5;

• Improved static type checking

def hello_world (name: str) -> str:
    return f'Hello {name}'

• C++:

• Compiler Errors and Warnings

• Enable as many Warning flags as 
possible, and consider them as 
code problems until fixed.

• cppcheck (fast)

• Coverity (slow … )



Dynamic analysis
• Study of your code while the program is being executed

• Ideally run tests for variety of scenarios / edge cases to test all coverage of code.

• Usually accomplished by adding extra information to the compiled binary 
(or running code) that augments the output 
• Including when things go wrong (or even to make it crash)

• Extra print statements / logging info
• Debug symbols: e.g g++ -g   to add line numbers, etc to your crashes

• GDB and similar: use the debugger to trace error points / add breakpoints, read stack traces
• Valgrind: run in a virtual environment to identify memory errors

• Sanitizer tools (part of Clang project): 

• tell you if you’re writing outside allowed memory, using uninitialised data
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Memory errors (C++)
• Most common: reading/writing beyond an array 

•vector<float> vec; 
vec.push_back(1);
std::cout << vec[2] << std::endl; 

• Results are undefined, as random memory is read:

• Might print 0, could print 1.1755e-38 ,  could crash

• Results irreproducible
• AddressSanitizer or running under valgrind

• vec.at(i) will throw an exception when attempting to access past the end of the array

• It is slightly slower (but unlikely to be significant in most cases)
• Much easier to find the bug
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Floating point errors
• 1.0/0.0,  0.0 / 0.0, sqrt(-1), inf, NaN, -NaN,

• All floating point exceptions 

• Mathematical operations involving NaN (C++) will produce NaN; can pollute results and should be fixed:

• In numerical computations, may need to identify and catch at runtime (.e.g isinf, isnan)

• Floats are most precise close to 0 - avoid using very small and very large numbers 

• Strongly recommend reading Floating point demystified for a more thorough understanding 

• NB. In python, 1.0/0.0 type operations raise exceptions (ZeroDivisionError).

• Also, in higher level applications (e.g. Pandas) NaN may be used to represent ‘missing data’ or similar
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https://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html


Testing
• Testing correctness of code can manifest at several levels:

• Types of Tests:

• System / Integration tests: test that the different components work together - usually at scale.
• For example; run reconstruction code over a large dataset. Does it crash? Are the results the same as the previous 

(night’s) test - and if not, is it understood. 

• Large scale validation runs.
• Generally easiest to write, as mirrors the nominal operation of the code;

• Might be difficult to ensure full coverage.

•  Regression tests: check that a fixed bug does not reappear;
•  Harder to write; need to keep track of test cases; only to prevent a reoccurrence of previous bugs.

• Unit tests: check functionality at a ~ function level - should be quick to run

• Hardest to write: think about what each function does, and to test all cases of input.

• Might need extra code to set up, fake input data, or even a mocked-up backend
• Test driven development; first write the test, then develop the code to pass the tests. 

• Static analysis:

• Add to your tests (e.g. in continuous integration); preferable to catch any problems at the static analysis stage, if you can
• Writing any tests is good;  the more you do, the better at writing them you’ll become.
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Unit test examples: python
• Using asserts:

• Useful for checking that a change that shouldn’t change the output, doesn’t change the output
•assert in python is in general very useful; apply where needed. 
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def squ(x): 
    return x**2 + 1 
def test_squ():
    assert squ(42)==1764, “should be 1764”  
test_squ() 

Traceback (most recent call last):
  File "square.py", line 6, in <module>
    test_squ()
  File "square.py", line 5, in test_squ
    assert(squ(42)==1764), should be 
AssertionError: should be 1764



Unit test: frameworks
• In C++, CppUnit, GoogleTest  is useful for functional tests.

• Python has: unittest, nose, pytest,  … 

•  Unittesting libraries provide a framework to run tests, setup and tear down initial states and collate the outputs into various formats.

• Other methods of automation tests - beyond function level testing also exist; e.g. 
https://robotframework.org for automation testing of application level processes (e.g. logging into a website, API  call correctness, 
etc).  

• Very easy to ‘go overboard’ when first exploring tests; think about the cases you really want to be checking; 
• Also consider testing failure mode correctness, as well as checking for correct behaviour. 

17

import unittest
from square import squ

class TestSquare(unittest.TestCase):
    def test_square(self):
        self.assertEqual( squ(42), 1764)

if __name__ == '__main__':
    unittest.main()

python test_square.py
F
======================================================================
FAIL: test_square (__main__.TestSquare)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "test_square.py", line 7, in test_square
    self.assertEqual( squ(42), 1764)
AssertionError: 1765 != 1764

----------------------------------------------------------------------
Ran 1 test in 0.000s

FAILED (failures=1)

https://robotframework.org


Random and comprehensive testing
• Random input testing not truly well used within particle physics:

• Although large MC and data samples with inherent randomness is used

• Fuzz testing (more important from security concerns) attempts to construct malformed or ‘almost-valid’ inputs in 
order to expose limitations in the code (e.g. poor parser logic).

• Coverage:

• Coverage is a measure of how much of the code is actually being tested:

• High coverage does not necessarily mean that it is exhaustively testing possible test cases of a function.

• Good to aim for high coverage, but experience / code complexity may suggest where you need to place 
effort on your test cases
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Continuous Integration
• Use tools, such as GitLab CI, Jenkins, Travis CI to automate your build / testing phase

• Catch problems before they’re part of the main codebase 

• Demonstrate functionality (or rather, lack of changing other outputs) to project leader

• Run as many tests as you can for a merge / pull request
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#example gitlab CI for LaTeX 
stages:
- build 
build:
    image: thomasweise/docker-texlive-full stage: build
    script:
      - apt update -y
      - apt install -y biber
      - make
         artifacts: 
            paths:
               - "*.pdf" 
            expire_in: 1 week 



Containers
• Useful for many reasons: 

• debugging, versioning, sharing code, reproducibility

• Run a lightweight virtual operating system on top of your real OS 

• Similar to a virtual machine (some OSs, e.g. Mac run docker within a small VM)
 

• Easily run Linux programs on Mac, Windows

• A description of an environment that someone else can run

• e.g. in docker;  a Ddockerfile declares the base image and all changes needed to build the container 
image

• Can run on the Grid

• Provides a repeatable / reproducible environment:

• Docker is most well known:

• Apptainer / singularity also well used within (and outside) HEP community

20



Correctness: Summary
• Expect debugging and testing of code to take longer than the code implementation

• Make use of:

• Human code reviews

• Tools for static and dynamic analysis:

• Unit tests, integration tests, etc.

• Remember the next person who will maintain your code (it might still be you …)

• Documentation; inline, external, … 

• Questions?
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Fast computing
• High throughput computing

• Can parallelise and buffer data for later processing 

• LHC;

• Generally ‘embarrassing parallel’ class of problems

• Events (typically) independent of each other (modulo detector conditions, etc.)
• Maximise throughput = events/second 

• Low latency computing

• impossible or not useful to buffer

• High frequency trading, autonomous vehicles

• High performance computing
• Problems that don’t parallelise easily - supercomputer 

• Climate modelling (inter-grid communications)

• Fast connections between processors, lots of RAM
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CPUs
• CPU clock speed no longer following Moore’s law:

(since ~ 2006) 

• ‘Free code speed-up’  

• Transistor density does continue to follow 
Moore’s law

• Memory has fallen behind CPU - 
big bottleneck frequently memory access 

• More processing power available
 through parallelism 

• More intelligence and complexity now required
to keep increasing performance gains

23 Source: Herb Sutter  

http://www.gotw.ca/publications/concurrency-ddj.htm


Memory
• Fast memory is expensive (in cost)
• Moving data between memory caches (and to/from

io devices is expensive (in time)

• Fastest memory in L1 caches, closest to the CPU,
• Then L2, L3,

• Next fastest is RAM
• Slowest then is on the physical storage:

•  (HDD, SSDs, Tape)

• Cache miss => retrieving data from a different cache

• NUMA: modern servers with multiple sockets and processors:
• Memory allocated to individual sockets, sharing and 

moving data between memory adding to overheads
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Source: What Every Programmer Should Know About Memory 
• NUMA: Non-uniform memory access

https://www.akkadia.org/drepper/cpumemory.pdf


Pipelining
•  Pipelining allows processors to execute multiple instructions per clock cycle:

• Aim to keep each processor unit busy per cpu by dividing instructions into a series of parallel steps.

• Only works if code is linear

• Branching is an issues;

• e.g. conditional statements, if / else

• Unable to load instructions past the branch point
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Five stage : Instruction pipeline 

IF = Instruction Fetch,
 ID = Instruction Decode

EX = Execute
MEM = Memory access

WB = Register write back

https://en.wikipedia.org/wiki/Instruction_pipelining


Branch prediction
• Aim to solve problem of not allowing instruction loading past branch point

•  Module within CPU decides which branch to take (see here) 
• Allows CPU to pipeline code with branches;

• However, significant penalty if non-predicted branch is selected.

•  CPU has to load new code into pipeline 

•  General Solutions: 

• remove branches if possible 
• Unbalance the branching (e.g. 10 / 90%  vs 50/50%).

 

• Sort the data:
• See stackoverflow.com 
• i.e. branch prediction might be optimal on sorted data

• However, penalty for sorting operation might make this ultimately slower … 
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If (x) {
… 

} else {
…
} 

https://danluu.com/branch-prediction/
https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array


Parallelism / concurrency 

• An entirely parallelisable calculation is referred to as embarrassingly parallel 

• Event generation: every collision has no dependency on the previous

• Simulate each collision on a separate CPU: scale to number of CPUs available 

• Most calculations have a parallel and serial component, which limits the speedup 
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Parallel and serial components 
• Naive example 

• Assume:

•  Making a car requires 1000 identical parts: each part takes 1 minute to make 

• The 1000 identical parts must be assembled in a final step: this takes 60 minutes 

• Serial path 

• 1000 parts assembled by a single worker + final assembly = 1000 + 60 minutes = 1060 minutes 

• Parallel path 

• 1000 parts assembled by different workers simultaneously + car assembly = 1 + 60 minutes = 61 minutes
• Maximum speedup 1060/61 = 17.4 

• No further gains without improving the final assembly (serial part)

• Amdahl’s law formalises this reasoning to an equation.  
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https://en.wikipedia.org/wiki/Amdahl%27s_law


Parallel architectures 
• A broad definition (Taxonomy) of parallel architectures;  

proposed in 1966 (and extended in 1972) by
Michael J. Flynn.

• SISD: Single Instruction, Single Data) 
• single-threaded operation

• SIMD: Single Instruction, Multiple Data) 

• vector operations

• MISD: Multiple Instruction, Single Data:

• Not common
• MIMD: Multiple Instruction, Multiple Data) 

• multi-threaded operation 
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Source: Wikipedia 

https://en.wikipedia.org/wiki/Flynn%27s_taxonomy


Vectorisation/SIMD 
• Modern CPUs can execute the same instructions on multiple data simultaneously 
•  Consider vector addition of two vectors into a result vector

• Scalar operation:
• Each element treated separately

• SIMD:
• Computation performed across multiple elements simultaneously.

• Different architectures depending on CPU generation: MMX, SSE, AVX 
• Code generated for one instruction set will not work with another 
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A0 B0 R0

A1 B1 R1

A2 B2 R2

+ =

A3 B3 R3

A0 B0 R0+ =

A1 B1 R1+ =

A2 B2 R2+ =

A3 B3 R3+ =

Scalar
SIMD



Auto-vectorisation 
• Compiler can generate appropriate vector instructions for loops etc (see Compiler Explorer)

• Will not always apply it if not beneficial

•  Might need re-think of code implementation to be used:

• e.g. not looping over a vector of Particles (each containing a px,py,pz), but rather looping through vectors of 
px,py,pz, where a corresponding row of elements represents a given particle. 
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https://gcc.godbolt.org/z/oKM1WY58f


Implementing vectorisation
• Autovectorisation is fragile: re-order your code and it can disappear 

• Can write using vector intrinsics: functions that act on arrays of 
data and operate accordingly 

• Resulting code will crash on different CPU type (e.g. older Intel/AMD)
• More complicated to write 

• Easiest solution: use a library written by an expert 

• E.g. for cos(), exp(), atan2() 

• CERN VDT
• Intel and AMD mathematical function libraries 

• For matrix/linear algebra 

• Eigen 
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https://github.com/dpiparo/vdt
https://eigen.tuxfamily.org/index.php?title=Main_Page


Multi-Threading
• Multiple instructions, multiple data : MIMD
• A thread is a sub-program controlled by your main program 
• Operating system decides when and on which CPU they run 

• (e.g n threads running across m CPUS)
• Thread order is non-deterministic: can lead to difficult bugs 

• Race conditions, deadlocks, irreproducible output
• Usually one thread per CPU
• Swapping between threads on one CPU: “hyper-threading” 

• Simplest case: 
• Single thread runs until blocked by some high-latency

operation (e.g. a cache miss, and needed to await for data)
• More complex:

• simultaneous multithreading (SMT)  tries to exploit limited instruction-level 
parallelism per thread and attempts to call instructions from multiple threads
to minimise wasted slots per cycle
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Source: Wikipedia 

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)


Threading with OpenMP
• Popular interface for multiprocessing tasks

• Code must ensure that there is no dependency on the order that threads run, or on data local to the thread. 
• May need to introduce synchronisation steps to wait for all current threads to complete before moving on.

• Intel Threading Building Blocks: used by ATLAS, CMS, LHCb for multi-threaded data processing 
• OpenMP is best for simpler situations with limited relationships between threads 
• Other frameworks (e.g. HPX ) also exist.
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https://github.com/STEllAR-GROUP/hpx


Memory sharing
• For particle physics we usually want to run our CPUs at 100% capacity
• Multi-CPU:

• Because each event is independent, 2x CPUs = 2x events/second

• Single-threaded application usually gives best throughput
• Multi-process

• Much of our application memory is read-only (detector layout, magnetic 
field)

• Linux mechanism (copy-on-write) means we can fork several 
subprocesses to process events and share read-only memory

• Multi-threading
• Threads can share all their read/write memory – big reduction in 

memory use
• Once software is thread-safe (threads not interfering with each other), can 

tune no. threads and no. processes to environment
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GPU programming 
• Initially designed for graphics calculations: matrix and vector operations 

• Tailored towards embarrassingly parallel problems 

• Increasingly used for scientific applications, machine learning:

• Tools such as tensorflow allow to easily swap between cpu 
and gpu backends

• For programming software, several competing options:

• CUDA for NVidia

• HIP for AMD

• OpenCL, SYCL: multi-platform 

• Movement of data into the gpu and the results back out require careful design.
• HEP software moving towards these, but difficult/labour-intensive to port:

• i.e. Challenges is to write code once, which can be effectively and optimally used on the multiple 
architectures of heterogeneous environments 

• Increasingly popular for supercomputers etc: pulling HEP that way

36

Source: NVidia 

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Parallelism: Summary
• Vectorisation and multi-threading are harder to work with than single-threaded programming 

• Necessary if you want to get the highest possible performance 

• Even if you don’t need the best performance, you can still apply some of this through libraries 

• Compilers will try to optimise your code (but may need some help)

• Programming for heterogeneous environments:

• Active area of study / discussion
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Runtime measurements
• Simples method to measure runtime: the time command

•  

• user = time spent in your code

• sys = time spent in (Linux) kernel code 

• real = sum of user + sys,  referred to as Walltime 

• You care about real, but you can only affect user

• If you’re worried about system calls, you can use strace to see 
which ones are used (see e.g Julia Evans strace zine )
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time factor 1234567890987654321123456789333333333

1234567890987654321123456789333333333: 3 3 3 23 43 27062723775121 1708375824282413291

real 0m0.867s
user 0m0.866s
sys   0m0.000s

• Walltime is the most important number for 
profiling, but also the most difficult to measure 
accurately 

• Varies with CPU

• Some variation from operating system
• Other running processes can influence the 

results

• Penalty if running in a virtual machine 

https://jvns.ca/strace-zine-v2.pdf


Sampling profilers
• Often, it’s not the overall time that’s most useful, 

• but knowing which calls and sections of your code take the most time.

• Optimise your effort there

• Simplest sampling profiling: the debugger; 

• Run your code many times in the debugger and interrupt (i.e. Sample) the code at various points
•  

• If your program spends 90% of its time in program X, then your sampling should find it in the call stack 90% of 
the time.

• Run your code say 10 times; does it stop in a similar place each time ? 
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Sampling profilers

• costlyFunction() (top of the stack trace): where program
 was when halted 

• “Self cost” 
• frameworkCall(), main(): call the function doing the work 

• “Total cost” 

• Self cost ≤ total cost 

• Focus optimisation efforts on functions with highest 
self-cost 

• Fortunately several tools exist to sample and visualise (e.g KCacheGrind) the results in a call graph

•  gperftools, Intel VTune, igprof
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VTune
• Intel VTune is an goof tool

• Free to download, if you 
register with Intel 

• Multi-language support; 
CPU, GPU, and FPGA
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https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html


Code Instrumentation
• High-level languages (e.g. C++, Python) have tools to “instrument” code:

• As an example:  Adding in timing information for C++ 

• Carries a performance overhead; not to be used within tight loops
• Google Benchmark builds this into a useful framework to benchmark functions 

42

https://github.com/google/benchmark


Code Instrumentation
• Several tools also available for python: cProfile builtin, e.g. 

• Use of Profile class and pstats to update the output and fine tune
the profiling
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10000007 function calls in 2.048 seconds
ncalls  tottime percall cumtime percall filename:lineno(function)

1    0.115 0.115 2.048 2.048 <string>:1(<module>)

1    0.000 0.000 1.933 1.933 test_profile.py:12(run)
1    1.219 1.219 1.831 1.831 test_profile.py:3(create_array)

1    0.000 0.000 2.048 2.048 {built-in method builtins.exec}
1    0.000 0.000 0.000 0.000 {built-in method builtins.print}

1    0.102 0.102 0.102 0.102 {built-in method builtins.sum}

10000000    0.612 0.000 0.612 0.000 {method 'append' of 'list' objects}
1    0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

import cProfile

def create_array():
    data = []
    for i in range(10000000):
        data.append(i)
    return data

def sum_data(d):
    return sum(d)

def run():
    arr = create_array()
    print(sum(arr))

if __name__ == "__main__":
    cProfile.run('run()')

if __name__ == "__main__":
    import cProfile, pstats
    profiler = cProfile.Profile()
    profiler.enable()
    run()
    profiler.disable()
    stats = pstats.Stats(profiler).sort_stats('tottime')
    stats.print_stats()   

ncalls  tot 
time  

per-
call  

cumtim
e  

percal
l filename:lineno(function)

1 1.270 1.27
0 1.909 1.909 test_profile.py:3(create_array)

1000000
0 0.639 0.00

0 0.639 0.000 {method 'append' of 'list' objects}

1 0.137 0.13
7 0.137 0.137 {built-in method builtins.sum}

1 0.000 0.00
0 0.000 0.000 {built-in method builtins.print}

1 0.000 0.00 2.046 2.046 test_profile.py:12(run)



Instrumentation
• perf  is now the gold standard - sampling and instrumenting 

• Part of Linux kernel (best results with new kernels)

• Monitor performance monitoring counters (PMCs)

• VTune also has access to these 

• (Some functionality requires root)
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https://perf.wiki.kernel.org/index.php/Main_Page


Emulation
• Callgrind tool (part of Valgrind )

• Valgrind is very powerful suite of tools for debugging and profiling (particularly with memory issues).

• Emulates a basic modern CPU, with level 1, level 2 caches, branch 
prediction (somewhat configurable) 

• Runs slowly 

• Information about cache misses and branch misprediction 

• Produces output suitable for KCacheGrind 
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https://valgrind.org
https://valgrind.org


Compiler optimisation
• Standard compilers (GCC, clang) able to perform significant code optimisations:

• -O0 = no optimisations applied 
• -O1, -O2 = basic, safe optimisations applied. ( e.g. g++ -O2 )

• -03 = expensive optimisations (take a long time, may actually make 
code slower) applied 

• -O2 is a good reference level; baseline it, and test against -O3

• Remember to try these optimisation levels, before optimisation by hand. 

• Fine-tuned optimisation options available - check GCC/clang documentation for details

• Example: (godbolt)

• Basic optimisation
level applied at 
compilation:
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https://godbolt.org/


Profiling and optimisation: Summary
• Profile helps identify bottlenecks and high ‘cost’ functions in code:

• Measure and benchmark (Also have an understanding of what is ‘good enough’).

• Many profilers available

• Biggest improvements usually will come from changing algorithms, rather than minor changes to code

• Once poor performance locations of code identified, you can decide where to focus your effort:

• (Note - even in some cases, highly optimised code will still take the most time). 

• Compiled languages (C++, fortran) faster in general than interpreted (python, ruby). 

• Standard libraries exist (FFTW, BLAS, Eigen). Most probably these will be faster than your own implementations:

• Don’t reinvent the wheel. 
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Floating-point and mathematical operations
• General comments:

• Addition is faster than multiplication (Compiler will usually help in these cases)
• Multiplication is faster than division

• Rearrange calculations to minimise number of operations 
• Compiler won’t necessarily do this for you (floating point rules) 

• Be very careful about loosing clarity of the function of the code.
• Clear and concise code might be more maintainable / error-free, than slightly more performant implementation.

• Consider if the trade-offs / performance increase is worth it. 
• e.g. if it’s really a bottleneck in the code flow

• Square roots are slow
• Trigonometric functions, exp, log are also slow
• Consider using optimised libraries (e.g. VDT), and trig. Identities
• For linear algebra, use a library (e.g Eigen)
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Loops and standard algorithms
• Don’t recalculate within a loop,

• Move outside to the outmost possible level

• Consider memory management within loops. 

• e.g don’t create a vector<int> within a loop, if you can create outside and reserve enough memory.

• C++ (STL) and python (builtin, numpy) contain well tested / optimised standard algorithms (e.g. std::sort);

• Familiarise yourself with the available ones, and use instead of your own.

• If the algorithm is the bottleneck, consider different options (merge sort, bubble sort, etc … )
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Data Structures
• Worth thinking about which data format fits your problem 

• In C++, std::vector is probably a good fit in most cases
(but make sure you reserve enough size in advance!) 

• std::map and std::unordered_map are also useful 

• Python (and C++):

• Consider whether builtin types are sufficient before creating own types (and sub-classing existing types)

• Designing for data optimisation or object representation ?
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Other comments
• Optimisation is important; Correctness must come first

• Ensure you understand (and document) any optimisations that are not concise. 

• (Might also want to keep the simpler implementation available, to help test for correctness). 

• While using ‘standard libraries’ and algorithms are encouraged for ‘production’ work;

• Writing and testing your own implementation remains the best way to learn;

• Even if never deployed.

• Again - Correctness comes first; then strive for optimisations (where meaningful).
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Memory
• Programs have access to two pools of memory: stack 

and heap 
• Stack:

• Small amount of memory associated with 
program 

• Fast to access - can be e.g. in CPU L1 cache
• E.g. variables in a function 

• Heap:
• Slower to access than stack 

• Can be dynamically allocated 
• If you don’t free up memory, this is where it 

leaks  (use … std::unique_ptr)
• All the RAM available on the machine (if it runs 

out, it will use hard 
drive - v slow!) 
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• Using too much memory is bad:
• Eventually you run out (memory leak) (or using swap)
• Allocating memory has CPU overhead; more so if data doesn’t fit (e.g. for L1 cache).
• A single allocation is cheaper than smaller allocation. 

• Better to access memory in order - data-locality 
• Appropriate data structures help with this 



Memory allocators
• Memory is not necessarily allocated when requested

• Allocator decides how much to request at a time and how much should be contiguous

• glibc by default

• Others available, particularly jemalloc (Facebook) and tcmalloc 
(Google) 

• No need to recompile, just preload 

•  May work better for your memory access pattern than glibc - free speedup! 

• tcmalloc can also provides a printout when large allocations are made:

• Note that --enable-large-alloc-report must be added to ./configure in recent releases of tcmalloc 
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Heap profilers
• jemalloc and tcmalloc both come with low-overhead profilers:

•  analyse which functions allocate most memory 

• Output can be interpreted much as with a call-graph

• Best overall is heaptrack - see e.g. this ATLAS memory fix that it signposted 
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• Memory profiling is more difficult than CPU 
profiling - tools less advanced/convenient 

• But improving all the time

• Can make a big difference if you’re using a lot of 
memory 

https://gitlab.cern.ch/atlas/athena/-/merge_requests/43251


Heaptrack
• jemalloc and tcmalloc both come with low-overhead profilers:

•  analyse which functions allocate most memory 

• Output can be interpreted much as with a call-graph

• Best overall is heaptrack - see e.g. this ATLAS memory fix that it signposted 
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• Memory profiling is more difficult than CPU 
profiling - tools less advanced/convenient 

• But improving all the time

• Can make a big difference if you’re using a lot of 
memory 

https://gitlab.cern.ch/atlas/athena/-/merge_requests/43251


Profiling Summary
• Continuing developments, particularly in concurrency and memory safe programming 

• Modern C++ (e.g. with std::unique_ptr) providing features to help minimise risks of memory leaks, etc.

• Use them … 

• A small amount of profiling/optimisation knowledge can dramatically improve your application performance 

• Profiling is more important than optimisation
• Good debugging and profiling skills can help you in a lot of areas throughout your PhD (and beyond)

• Advanced techniques useful once you’ve done the easy bits 

• Particularly for C++: see books (e.g. by Herb Sutter, Scott Meyers) and videos (e.g. from CppCon, pyCon) 
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Computing challenges for (HL)-LHC and others
• Modelling of requirements for HL-LHC shows simple scaling of technologies not sufficient to meet needs.

• Software R&D required now to meet these demands and 
optimise for physics exploitation. 
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Preliminary schedule HL-LHC



Storage
• CPU is not the only concern, 

• Disk space already at a premium,

• Tape used for custodial data 

• and for less frequently used data needed in derivation steps 

• Run-3 data taking - just starting;
• New smaller data analysis formats for run-3, and prototypes for 

run-4
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Utilising technologies
• As mentioned at start of the lecture - Clock speed scaling stopped following Moore’s law around 2006 

• Limited  serial processing options
• Transistor density does however

appear to continue to follow the trend.

• Memory access can now take 
O(100)’s of clock cycles

• Facilities and capabilities / use cases
shift towards GPU, FPGA, TPU
processing:
• Machine learning (and also 

towards differentiable programming)
• Heterogeneity of systems
• HPC sites vs more standard 

‘grid’ architectures. 
• Analysis Facilities … 

59 Based on material from G. Stewart 

https://indico.cern.ch/event/1127798/contributions/4782002/attachments/2413160/4131126/HSF%20and%20R%26D%20Projects%20Update%20-%20SWIFT-HEP%202022-03.pdf


What do we need this code / data for?
• Simplified view of ATLAS processing chain for MC and data
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Reconstruction
• “natural” SW organization

• first run detector specific reconstruction algorithms

• for tracks and calorimeter clusters, ...

• then combined reconstruction

• identify physics objects

• based on infrastructure

• common Tools and Services

• e.g. tracking and vertexing tools

• fitting, propagation...
• used in all software layers above

• ~common code base with High Level Trigger

• regional vs full event reconstruction 
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Reconstruction: Software flow
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• chain of algorithms and data of full reconstruction

• looks more complicated than it is…

• Framework and steering (python) controls the flow and 
specific sets of algorithms 

• can break it up in domains:

• combined reconstruction

• e.g. tracking broken down in a sequence of algorithms

• one does not  need to know all the details

• usually work on a specific aspects 



Improving framework software
• Previous framework diagram modelled from ATLAS Athena framework without multithreading available

• athenaMT now in production. Schedular allocates algorithms from each event to run at correct moment once 
their corresponding inputs are available.

• Significant reduction of memory utilisations with very few 
compromises.

63 https://atlas.cern/updates/briefing/renovating-athena 
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Data format evolutions
• ROOT TTree ~ 20 years of usage 

• RNtuple aiming as replacement by time of HL-LHC 

• Estimations of ~ 3x faster, 10-20% smaller data size, together with better throughputs

64 ROOT2022-Workshop-Overview.pdf 

https://indico.fnal.gov/event/23628/contributions/237933/attachments/154858/201533/ROOT2022-Workshop-Overview.pdf


RNTuple comparisons
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Declarative analysis
• Traditional analysis typically follows event-loop style processing;

• Loop over each event;

• Read in variables of interest

• Make selections;

• Augment data (e.g. new variables)
• Fill histograms / TTrees

• Save output for final analysis / statistical interpretations

• RDataFrame in ROOT allows to state what you want to happen, 
and worry less about how to make it happen.

• Multithreaded support
• Multiple file formats and backend capabilities

• Computational graph structure ensures data is only read as required 

• c.f. TTree::Draw() method for constructing several histograms. 

• Latest versions of ROOT also to support including systematic variations
within the computational graph structure of RDataFrame. 
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https://doi.org/10.1051/epjconf/202024503009



Summary
• Computing and data are fundamental to HEP

• Current and future requirements continue to push needed development improvements

• Mulit-threading / processing allows performance scaling beyond clock speed single-core improvements
• Heterogeneous environments and resources 

• Machine learning increasingly used.

• Use tests to help:
• Ensure correctness

• Stop bugs reoccurring 
• Stop unwanted side effects
• Help aid in the code design (e.g. with test-driven development).

• Use ‘Rubber duck’ philosophy to work through problems
• Profile your code and identify bottlenecks when performance is important:
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Hands-on

68



Profiling in python
• https://github.com/snafus/OptimisationWorkshop.git

• Requires python 3 and Jupiter notebook

• (Best to run with, e.g. anaconda and/or virtual env)
• Simplest way to run via mybinder:

• mybinder.org link (or just http://cern.ch/go/p7tT)

• Take a simple algorithm to find the number of 
 primes up to some number N.

• Use the ‘play button’ or command-enter
(alt-enter) to run each cell.

• Work through the cells and try to measure
the algorithm’s performance and even see
if you can improve it. 
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https://github.com/snafus/OptimisationWorkshop.git
https://mybinder.org/v2/gh/snafus/OptimisationWorkshop.git/master?labpath=Exercise_PythonNotebook%2FPrimes_Profiling_Introduction.ipynb
http://cern.ch/go/p7tT


Profiling in python
• python -m cProfile Exercise_1.py

• 109596 function calls in 22.317 seconds

•    Ordered by: standard name

•    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
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C++ profiling
• Compare Exercise_1.cpp timing to Exercise_1.py

• Profile Exercise_2 and Exercise_3

• Where can you optimize?


