O L —————————

> gy _.-_t-t:-'k E""'h'"‘ \5‘_ .’;:.

1 R » W
E £ 1 il 5,
- 3 o ! ‘Q_'. ’{h‘t‘. =)
7 & B AR

-
v
O
pa—

(4

LI

« FPGA programming

| €1 1o 5 17AAZ160)
. 261391
(K b Kristian Harder, RAL & a9

1.5

o
0
o
-

L —

Kristian Harder

PhD Hamburg University/DESY 1998—2002:
QCD analysis (OPAL, TESLA)
track reconstruction software (TESLA)

Fermilab 2002—-2006:
electroweak analysis (DQ)
silicon detector back-end electronics (D)

RAL 2006—:
silicon detector simulation (ILC)
exotica analysis (CMS)
readout—-trigger electronics (CMS, DUNE)

Kristian Harder, RAL HEP graduate lectures 2023 2

Science and
S About thls lecture

ﬁu%tﬂiq#ﬂtﬂt "

N -

= i P J— i-ll| 4

-
e

. ? 2 % = -)
¥ # w - o - o

%% Many of you will have to program FPGASs
during your project or afterwards.
7% Not many of you will have to design new FPGAs...
® I will focus on the practical aspects
of working with FPGAs.
Targeting absolute beginners!
14:00 — 15:00 introductory lecture

" _- 1; _'_,_,'- :
%f / 15:00 — 15:15 move over to electronics lab

15:15 — 17:30 actually do it / discussion / Q&A s

(with coffee break, and might finish earlier)

/

k & .

- _ i

=2 What IS an FPGA~?

Facilities Council

Field Programmable Gate Array

an integrated circuit consisting of

‘k a large number of blocks with logic gates

‘;% connected by a programmable interconnection fabric
“% accessible through I/O blocks

rd
S T T T .'h\m H.’
i““l—!"“‘__ H‘HHM o BN ON B B omh gy H’f
| E= e QOO0 o | /
= ROBOOOOO 5
|:| |H l: QS n R s Ru L n R ﬁ“xx_
PROGRAMMAEBLE aac i coguppoval Hx
c D000 o /O BLOCKS
INTERCONNECT ﬁ BOOGMG0 8 ﬁ
- __gﬂi:FDDf?D{jffr ,
[TROQOoRO00 o
JEIR £13 B £ Exd 613 £ 513
P ¥

LOGIC BLOCKS

Program your own electronic circuit onto this chip, anywhere, anytime!
(within available resources)

Kristian Harder, RAL HEP graduate lectures 2023 4

Kristian Harder, RAL HEP graduate lectures 2023

Kristian Harder, RAL HEP graduate lectures 2023

Kristian Harder, RAL HEP graduate lectures 2023

Science and
Technology
Facilities Council

Not actually a good example.
Rather than specific gates,
FPGASs use lookup tables.
®) any gate configurable

‘ (in any location

OUTPUTS

—0

Kristian Harder, RAL HEP graduate lectures 2023

up tables

A look-up table is a small memory bank
that encodes a general logic function:

input A | input B | input C | output

OO0
HHOOKRKOO
HOHOKORO
HOOHKOHKHKDO

LUTSs can be programmed to act as basic logic gates
(AND, OR, etc),
but also as complex combinations.

Kristian Harder, RAL HEP graduate lectures 2023

Configurable logic block by Xilinx (probably outdated):

Cl1 ¢z C3 4

G3
G2
Gl

F4

F3

F2

Fl

il

K
(Clock)

“ look-up tables to manipulate inputs

* Mmultiplexers to route the signals

* flip-flops (clocked storage devices) to hold the outputs

‘k multiple blocks running on same clock for synchronous operation

Kristian Harder, RAL HEP graduate lectures 2023

10

reqister

iInputs
UV
register

=>| register

Kristian Harder, RAL HEP graduate lectures 2023

new output
every
clock edge

—>| register

register

—

Register

D flip-flop

data q

clock S ~q

graph by Edward Freeman (STFC)

11

Configurable logic block by Xilinx (probably outdated):

Cl1 ¢z C3 4

G3
G2
Gl

F4

F3

F2

Fl

il

K
(Clock)

other blocks on modern FPGAS:
high speed transceivers, PCle interfaces, ethernet interfaces,

memory banks, clock generators, DSPs, interfaces for external RAM,

even entire CPUs... (but typically digital electronics only)

Kristian Harder, RAL HEP graduate lectures 2023

12

Science and
G Ve modern FPGAs

example of resources available on current generation FPGAs:
Xilinx Virtex Ultrascale+ devices

Device Name VU19P
Svstem Logic Cells (K) 2,938
CLE Flip-Flops (K) 2172
CLB LUTSs (K) 4,086
Max. Dist. RAM (Mb) 8.4
Total Block RAM {Mb) 759
UltraRAn (Mb) 90.0
HEM DRAM [GE]
HBEM AX| Interfaces
Clock Mgmt Tiles (CMTs)
DSP Slices
Peak INTE D5P (TOP/s)
PCle® Gen3 x16
PCle Gen3 x16/Gend x8 / CCIX'Y
150G Interlaken
100G Ethernet w/ KR4 RS-FEC
Max. Single-Ended HP 1/0s
Max. Single-Ended HD 1/0s
GTY 32.75Ghb/s Transceivers

NB: very difficult to use anywhere near 100% of those resources
due to limitations of the interconnection fabric

Kristian Harder, RAL HEP graduate lectures 2023

CPUs and FPGASs are capable of performing arbitrary tasks
depending on programming.
But the approach is fundamentally different:

rigid silicon — the processing units remain fixed
(except basics like enabling/disabling cores in multicore processors)
Flexibility from stepping through instructions provided in memory

flexibility arises from reconfiguring the fabric itself,
producing a highly specialised processing unit

* very different type of device
* major differences in how they are being programmed
* suitable for different types of application

Kristian Harder, RAL HEP graduate lectures 2023

14

= 8.

Science a-nc'r :
G Ve CPU vs FPGA

example: edge detection in histogram (e.g. line of video pixels)

B!

] scan a line like

for 1 in range(l1l,17):
edge[1] = (abs(hist[i]-hist[i-1])>thres)

Kristian Harder, RAL HEP graduate lectures 2023

Technology
Facilities Council

% “Sclencs TR

CPU vs FPGA

example: edge detection in histogram (e.g. line of video pixels)

Kristian Harder, RAL HEP graduate lectures 2023

scan a line like

for 1 in range(l,17):
edge[i] = (abs(hist[i]-hist[i-1])>thres)

instantiate a bunch of comparators,
get result in O(1) clock cycle

16

Science i
< S CPU vs FPGA

example: edge detection in histogram (e.g. line of video pixels)

B!

] scan a line like

for 1 in range(l,17):
edge[i] = (abs(hist[i]-hist[i-1])>thres)

instantiate a bunch of comparators,
get result in O(1) clock cycle

FPGA benefits from parallel instantiation of
a large number of specialised logic circuits

NB: GPUs are somewhat in the middle — massive parallelisation with simplified CPUs

Kristian Harder, RAL HEP graduate lectures 2023 17

Science and ' . - 3
R e FPGA applications

FPGAs offer advantages over CPUs for specific applications:

‘;% high degree of parallelisation, pipelining

‘;% many high speed data links

‘;% precise control over data path — fixed latency
‘;% low latency (if done right)

FPGAs have weaknesses too:

‘;% complex arithmetic (floating point numbers etc)
“* cost (depending on parameters)

Kristian Harder, RAL HEP graduate lectures 2023

18

Science an

}5 o | FPGA applications

Use of FPGAS in particle physics

‘;% L1 trigger
* DAQ
‘;% clock distribution (incl fast commands, triggers)

FPGA use elsewhere

‘;% high performance computing: FPGASs supporting CPUs
‘;% aerospace, automotive, telecommunications, BitCoin mining
‘;% prototyping of new ASICs

Kristian Harder, RAL HEP graduate lectures 2023

19

e -pG’A applications

Use of FPGAS in particle physics

* L1 trigger
* DAQ
‘;% clock distribution (incl fast commands, triggers)

FPGA use elsewhere

‘;% high performance computing: FPGASsS supporting CPUs
';% aerospace, automotive, telecommunications, BitCoin mining

* prototyping of new ASICs

Note on ASICs (Application Specific Integrated Circuits):
actual custom chips can have higher speed, higher density, lower
power, more resources, can be cheaper in large quantities,

require no in situ programming
BUT: much longer time to availability, mistakes are expensive
E} we typically use them only in detector front-end

Kristian Harder, RAL HEP graduate lectures 2023

20

vendors

AMDAL | = XILINX. about 50% market share, full range incl high end
(intel“) FPGA formerly Altera, about 35% market share
=2 LATTICE low power, low cost devices

gﬂqick'-oqic low power FPGA/ASIC hybrids

‘e Microsemi low power, radiation hard, non-volatile (flash based)

...and probably others!
This lecture focusing on Xilinx — used by CMS-UK, ATLAS-UK

Kristian Harder, RAL HEP graduate lectures 2023 21

T

'mercial FPGA platforms

examples for commercially available FPGA boards:

FPGA ItttV V:
ooy DItLVVare FPGA accelerator card

based on Altera device

FPGA RF/optical 1/O card
based on Xilinx device

L]

3
et

'] L -
D A

Kristian Harder, RAL HEP graduate lectures 2023

22

Nn hardware

multi-purpose board

mostly for CMS upgrade
two FPGA sites

FPGASs easily replaceable
optical high speed links
ATCA form factor

comes with single board PC

2 2 X 2 2 Xe X

Kristian Harder, RAL HEP graduate lectures 2023 23

s s i
gﬁ i e development boards

Facilities Council

FPGA manufacturers provide development platforms for their FPGAS:
FPGA on circuit board with peripherals and infrastructure

benefits:
‘;% often available very early on after release of new devices

‘;% often relatively low cost because subsidised

In widespread use in our labs!
‘;% tested algorithims for Serenity long before prototypes available

‘;% experience can actually influence custom board design
‘;% ideal for learning: availability, example designs

Kristian Harder, RAL HEP graduate lectures 2023 24

Science and
Technology
Facilities Council

PB Switches SD Card Slot 2x Pmod /O + 12C PCle® Gen 2x4 slot (4 x GTR)

CAN Header
A=

SysMon . : _ e e g ¥ _
L B oy S x . i GTH SMA Rx/Tx + Ref Clock

PL IO Access ARME Trace

FMC 1 (LA Bus + BGTH)

user LEDs and switches

w= 1 x 4 SFP Cages (4 x GTH)

ZUSEG (XCZUIEG-2FFVB1156E)
(Stacked)

FMC 2 (LA Bus + 8GTH)

DDR4 Component (PL 16-bit)

et d _m HDMI In/Out (Stacked)

DDR4 DIMM (PS 64-bit) “ aij B (3xGTH)

Power-On Switch

12 VoIt POWET s

Kristian Harder, RAL HEP graduate lectures 2023

Science and - A
i’é'.f Failigios Coust Digilent Nexys A7

i e
woom
-II
1

b ioe o o
-

abﬂaéa

'?ﬂ "Rlb oo ‘-p

Kristian Harder, RAL HEP graduate lectures 2023

26

The set of configuration instructions for an FPGA
* iIs not actually modifying hardware,

* but it is not a software algorithm either.

It is somewhat in between, which is why it is called

WAL 4 F AT TR Ve G Q LRIy
D \W% e SO e N A
2 WY N — J%:%’w 2

Description either graphically as schematics,
or in a hardware description language.

hardware description language looks similar to software,

but is very different.

Kristian Harder, RAL HEP graduate lectures 2023 27

Science and
Technology
Facilities Council

plusOp i

I
0[30:0]
10[30:0] Q

RTL_ADD

-—D leds[7:0]

count reg[30:0]

> C

D

RTL REG

We won’t use schematics today, but we will implement this design.
Note inputs, outputs, blocks, signals, busses, constants, and a loop!
Relatively easy to understand, but not very practical for complex tasks.

Kristian Harder, RAL HEP graduate lectures 2023

Science and - o
RE Fechities Souncil hardware description languages

Two main languages in use:

VHDL Verilog
resemblance Pascal/Ada | C
strong types ves no
composite data types | yes no
case sensitive no ves
library management ves no
who in CMS likes it Brits Americans

from blog.digilentinc.com

Kristian Harder, RAL HEP graduate lectures 2023

__ —— T

= oty S

)ardware description languages

% Facilities Council

Two main languages in use:

VHDL Verilog
resemblance Pascal/Ada | C
strong types ves no
composite data types | yes no
case sensitive no ves
library management ves no
who in CMS likes it Brits Americans

We use VHDL in our projects because

‘ﬁ% complex data types make interfaces easier to read (and write)
‘Af strong typing reduces margin for error

‘A' it does seem to be a bit easier to read

Firmware design is intrinsically modular.

Can mix Verilog, VHDL and schematic design in one project.
(Prefer not to.)

Kristian Harder, RAL HEP graduate lectures 2023

Let’'s make some LEDs blink on our Nexys A7 development board!
We will need.:

*“" " Nexys A7 has a set of 16 user LEDs connected to FPGA 1I/0 pins
4‘7 pin location and required voltage levels are documented

4‘7

all development boards have oscillators

4‘5 some connected to FPGA directly
77 some connected through programmable clock chips
#‘” high speed clock signals are often differential

firmware

ﬂ? VHDL design discussed on following pages

Kristian Harder, RAL HEP graduate lectures 2023

31

Science and
G Ve top level block

library IEEE;
use IEFE.std logic 1164.a11;

;| use IEEE.numeric_std.all; ThiS iS a" the VHDL we need tOday!

+ Library UNISIM;
use UMISIM,vcomponents.all;

“% This block connects to a
I — 100 MHz clock input,
end top; % sends the clock signal
architecture rtl of top is through a buffer,
SRR PRI % runs a 31 bit counter on that clock
| begin (highest bit should then alternate
' 'TEL'FH” at about 0.1 Hz),
‘;% and connects the highest

o == clk
(i.e. slowest) bits to LEDs

entity top is port(

rising edge(clk) then
count == count + 1;

Let’s look at the code in detail

leds == std logic vector(count(30 downto 23});

end rtl;

Kristian Harder, RAL HEP graduate lectures 2023 32

Science and
Technology
Facilities Council

ary IEEE:
IEEE.std logic_1164.a11;
IEEE. numeric_std.all;

ibrary UNISIM;
UNISIM.vcomponents.all;

)

: in STD_LOGIC;

: out STD LOGIC VECTOR (7 downto O)
1

end top;

architecture rtl of top 1is

; : std logic;
unt : unsigned(30 downto O) := {others ==

begin

ibuf: BUFG

gin
if rising_edgeiclk) then
1t == count + 1;
s <= std_logic_vector(count(30 downto 23));

end rtl;

Kristian Harder, RAL HEP graduate lectures 2023

top level block

<—— This is a comment

33

Rt

Science and

N Col top level block

library IEEE;
use IEFE.std logic 1164.a11;

use IEEE.numeric_std.all; L Load packages from libraries

Library UNISIM;
use UMISIM,vcomponents.all;

. in STD_LOGIC;
: out STD LOGIC VECTOR (7 downto O)
|
end top;

%% IEEE.std _logic_1164
has types for logic signals

f% IEEE.numeric_std
has numeric data types

architecture rtl of top 1is

signal clk : std logic;
signal count : unsigned(30 downto @) := (others == '0');

begin

%% unisim.VComponents
has declarations
and simulation data for
device-specific primitives

ibuf: BUFG
port map(

g_edge(clk) then
t == count + 1:

leds == std logic vector(count(30 downto 23});

end rtl;

Kristian Harder, RAL HEP graduate lectures 2023

34

Science and
S top level block

library IEEE;
use IEFE.std logic 1164.311;
se IEEE.numeric_std.all;

"y UNISIM;
se UNISIM.vcomponents.all;

nort(
. ¢ 1in STD_LOGIC;

. out STD_LOGIC VECTOR (7 downto 0) +—— Declare a VHDL block with ports

¥
end top;

architecture rtl of top 1is

1 clk : std logic;
al count : unsigned(30 downto @) := (others == 'G')};

%% We give this block a name (top)

%% and define connections (ports)
to the outside

begin

ibuf: BUFG
port map

f% top level ports correspond to
actual FPGA I/0O pins

rising edge(clk) then
count == count + 1;

leds == std logic vector(count(30 downto 23});

end rtl;

Kristian Harder, RAL HEP graduate lectures 2023 35

Science and
Technology
Facilities Council

ary IEEE:
IEEE.std logic_1164.a11;
IEEE. numeric_std.all;

ibrary UNISIM;
UNISIM.vcomponents.all;

)

: in STD_LOGIC;

: out STD LOGIC VECTOR (7 downto O)
1

end top;

architecture rtl of top 1is

; : std logic;
unt : unsigned(30 downto O) := {others ==

begin

ibuf: BUFG

gin
if rising_edgeiclk) then
1t == count + 1;
s <= std_logic_vector(count(30 downto 23));

end rtl;

Kristian Harder, RAL HEP graduate lectures 2023

top level block

»<— Describe the VHDL block

36

Science and
Technology
Facilities Council

vrary IEEE;
IEEE. std logic_1164.all;
use IEEE.numeric_std.all;

rary UNISIM;
se UNISIM.vcomponents.all;

entity top 1 (
: in STD_LOGIC;

: out STD LOGIC VECTOR (7 downto O)

¥
end top;

architecture rtl of top 1is

al clk : std logic;
al count : unsigned(30 downto 0) := (others

begin

ibuf: BUFG

gin

if rising_edgeiclk) then
count == count + 1;

end 1

end proc

leds <= std logic_vector(count(30 downto 23));

end rtl;

Kristian Harder, RAL HEP graduate lectures 2023

top level block

}<— Declare internal signals we need

%% consider signals more like wires,
not as variables

f% can assign an initial state, though

37

Science and

N Col top level block

ary IEEE;
use IEFE.std logic 1164.311;
se IEEE.numeric_std.all;

"y UNISIM;
se UNISIM.vcomponents.all;

entity top is port(
: . ¢ 1in STD_LOGIC;
: out STD LOGIC VECTOR (7 downto O)
¥
end top;

architecture rtl of top 1is

1 clk : std logic;
al count : unsigned(30 downto 0]

begin

ibuf: BUFG 3
port map

»<— Instantiate a different block

%% this one is from a library

f% it buffers an incoming clock
for distribution

rising edge(clk) then
count == count + 1;

leds <= std logic_vector(count(30 downto 23));

?% we name this instance ibuf

* we connect it to our signals

end rtl;

Kristian Harder, RAL HEP graduate lectures 2023

38

Science and
S top level block

library IEEE;
use IEFE.std logic 1164.a11;
use IEEE.numeric_std.all;

Library UNISIM;
use UMISIM,vcomponents.all;

entity top is _
: in STD_LOGIC;
: out STD_LOGIC_VECTOR (7 downto O)

¥
end top;

architecture rtl of top 1is

signal clk : std logic;
signal count : unsigned(30 downto @) := (others == '0');

begin

ibuf: BUFG

d Process

%% runs when specific events occur
if rising_edge(clk) then

count == count + 1:
end

end process;

here: rising edge of clk

leds == std logic vector(count(30 downto 23});

f% allocate incremented value to count

(almost like software, isn’t it?)

end rtl;

Kristian Harder, RAL HEP graduate lectures 2023 39

Science and
S top level block

library IEEE;
use IEFE.std logic 1164.a11;
use IEEE.numeric_std.all;

Library UNISIM;
use UNISIM.vcomponents.all;

entity top 1is .
: in STD_LOGIC;
: out STD LOGIC VECTOR (7 downto O)

|
end top;

architecture rtl of top 1is

signal clk : std logic;
signal count : unsigned(30 downto @) := (others == '0');

begin

ibuf: BUFG

connecting counter bits with LED

%% this is NOT a one time assignment
f% It connects signals like wires

if rising_edge(clk) then
count == count + 1;
and

end process;

f% every change in count
leds == std logic vector({count (30 downto 23)); <— will Change the state of leds

end rtl;

Kristian Harder, RAL HEP graduate lectures 2023 40

Science and
G Ve top level block

library IEEE;

s IEEEstd logic_1164,a1l; one missing ingredient:
oo e our design software needs to be told
what pins clock and LEDs
AR SRR o e are connected to
. out STD _LOGIC_VECTOR (7 downto 0)

ond 1ap; and what logic standard to use
define constraints (separate file)

Library UNISIM;
use UMISIM,vcomponents.all;

architecture rtl of top 1is

2 ' set_property CFGBVS [current_design]
3 set_property CONFIG _VOLTAGE 3.3 [current_design]

signal clk : std logic;

ount : unsigned(30 downto 0) := (
begin

ibuf: BUFG
port n

i Set_hfﬁﬁeftf TANDARD LVCMOS33 [get_ports {sysclk}]
set_property PACKAGE PIN E3 [get_ports sysclk
create clock -period 10 -name sysclk [get ports sysclk]

, 5!*1: _property TANDARD LVCMOS33 [get_ports {leds[*]}]
. set_property PACKAGE_PIN H17 [get_ports {leds[0]}]
2 set_property P _PIN K15 [get_ports {1]

. set_property P _PIN J13 [get_ports
set_property F _PIN N14 [get_ports {leds[3]}
set_property P _PIN R18 [get_ports {leds[4]}]
set_property P ' PIN V17 [get ports '1ed~[J]:

. set_property P -~ PIN U17 [get_ports {1
set_property P _PIN Ul6 [get_ports '1ed~["] -]

if rising_edgeiclk) then
count == count + 1;

end pr

leds <= std logic_vector(count(30 downto 23));

- (this information from Nexys A7 documentation)
end rtl;

Kristian Harder, RAL HEP graduate lectures 2023 41

I\ EEe. firmware workflow

There is a number of steps between VHDL and a blinking LED:

synthesis
translate VHDL into netlist (optimised components with connections)

implementation
map design onto actual FPGA resources,
assign place to entities and route signals along the fabric

bitfile generation

create actual bitstream that can be uploaded to device

JTAG configuration
connect to device via serial JTAG interface and configure it!
most high-end FPGASs use volatile RAM to store configuration
— need to reconfigure with JTAG after each power-up

or store firmware in external flash ROM

Kristian Harder, RAL HEP graduate lectures 2023 42

% Science and
Technology I G
Facilities Council J A

JTAG interface can have several devices in series
‘;% e.dg. multiple FPGAs

‘;% or a FPGA and a flash ROM for non-volatile firmware storage
All devices identify themselves, so software can verify expected type

P

T DEVICE 1 T DEVICE 2 T DEVICE 3

™S
=
TCK
=

DI
OD—— DI TDO TDI TDO TOI DO

DO
(e

Some boards have built-in JTAG controllers, just need USB cable.
Others need external USB programmers:

JTAG connection can be used for debugging! Logic analyser cores

Kristian Harder, RAL HEP graduate lectures 2023 43

Science and
Technology
Facilities Council

HEPLNX - TigerVNC X

4* Applications Places example - [/data/pff62257/fpga_lecture/example/example/example.xpr] - Vivado 2019.1 Mon 14:40 & a) O

example - [/data/pff62257/fpga_lecture/example/example/example.xpr] - Vivado 2019.1

FEile Edit Flow Tools Reports Window Layout Wiew Help write_bitstream Complete «
= it Default Layout v

'l

Flow Navigator ? PROJECT MANAGER - example
~ PROJECT MANAGER
o Settings
Add Sources

Sources P 1ary % | top.vhd

al x| ¢ + & /data/pff62257/fpga_lecturejexample/example/example.srcs/sources_1/imports/example/top.vhd

~ [Design Sources (1) Q - ¥ BB X / ®mB 0
@ =~ topirtl) (top.vhd) .

% IP Catalog Constraints: {1 - i signal clk : std logic;

~ = constrs_1 (1) signal count : unsigned(27 downto 0) := (others == '0');

Language Templates

IP INTEGRATOR [constraints.xdc (target)

Simulation Sources (1)

Utility Sources ibuf: IBUFDS

port map(
1 == sysclk_p,
ib == sysclk_n.
o == clk

begin
Create Block Design

Hierarchy Libr Compile Order v
SIMULATION

Run Simulation Source File Properties

process(clk)
begin
1f rising edge(clk) then
RTL ANALYSIS count <= count + 1:
| Enabled end if;
» Open Elaborated Design end process;

Location: fdata/pff62257/fpga_lecture/examplefex

I constraints.xdec

SYNTHESIS Type: XDC III 1 leds (7 downto @) == std logic vector(count(27 downto 20));

P Run Synthesis Size:

> Open Synthesized Design ¢ end rtl;

General = Froperties ¢

IMPLEMENTATION

» Run Implementation Design Runs

> Open Implemented Design = %
Name Constraints Status WNS TNS WHS THS TPWS Total Power Failed Routes LUT FF BR&AMs URAM DSP Start Elapsed Run Strategy
PROGRAM AND DEBUG v o synth 1 constrs_1 synth_design Complete! 1 28 0.0 0 0 5/11)20, 2226 PM 00:02:20 Vivado Synthesis Defaults (Vivado Synthesis 2019)

% Generate Bitstream + impl.1 constrs_1 write_bitstream Complete! 7,227 0,000 0,055 0.000 0,000 0.682 1 28 0.0 0 0 5/11/20, 22289 PM 00:05:08 Vivado Implementation Defaults (Vivado Implementa)

» Open Hardware Manager

| JavaEmbeddedFrame Bl pffe2257@heplnv062: ¢ example - [/data/pff62257/fpga_lec.. Bl pff62257@heplnw062: /datalpff62...

Kristian Harder, RAL HEP graduate lectures 2023

Science and

Vivado report

Report after building our example firmware for the Nexys A7:

Settings Edit

Project name:

Implementation Summary | Rol

Report

Incremental

Setup | Hold

7.1 ns
Total Negati (Tl
Number of Failing Endpoint
Total Num of Endpoin
Timi

Utilization : ynth] | Post-implementation Power Summary | ©

Graph | Table Total On-Chip Power:

Junction Temperature:

Kristian Harder, RAL HEP graduate lectures 2023

45

Science and

< S simulation

More complex firmware is best tested in simulation first
A very powerful tool for verification and debugging!

% exactly reproducible inputs
‘;% much faster turnaround time than tests on hardware

‘;% but not always a fully accurate reflection of timing,
especially when timing is marginal or outside specifications

comparison of firmware output on simulation and on actual hardware
IS often part of verification procedure

Vivado has an integrated simulator
Third party software exists (e.g. Siemens/Mentor Graphics QuestaSim)

Kristian Harder, RAL HEP graduate lectures 2023 46

Science and

o Simulation

7]

o | R RE R I Y
e 6 B Yo% 5 || QQ&S.I7

‘{;.l sim - Default s sl = i_] Objects R ™ weve -Defptt ————————————
"i[nstanu:e | | || ¥ Mame

=g top
o SALWAYSEZS

b - = 3 & K Pl .] = L [E 100 n=-3 [E] [E5 [2% [

W oH B & i

&= L] 'l|_ I|_

¥ Processes (Active] — si— H @ X
| Name [Type (fitered)
o
o
4

i
re

P
o
o
o
o
o
o
o
o
<
|
o
a
a
v
-

W

Lo

1870 ns to 2526 ns Mow: 2,820 ns Delta:z 1 sim: ftop o/ SINITIAL #69

Kristian Harder, RAL HEP graduate lectures 2023

Science and
Technology
Facilities Council

elopment: distributed, collaborative, version contrc
unit tests, release management

Science and
Technology
Facilities Council

approach a

development: distributed, collaborative, version controlle
unit tests, release management
iIrmware development: lonesome engirssi=Wwith :“.,‘. w1 or zIp files

e)

%% big very complex chips

%% extremely high speed signals
$- distributed development

7 negotiated interfaces

%% developers with varymg skill Ievels

— e ———

Sc|eﬁ'ég [Pt g S o ” oy < -
EE ey Con large firmware projects

Firmware projects like CMS L1 trigger are very demanding:
‘;% very complex

‘;% need to be very reliable

‘;% subject to international collaboration and peer review

Need to work much more like with large software projects:
“* modularity (leave the hardcore stuff to top experts)

‘;% version control and release management

‘;% rigorous testing, project supervision

CMS L1 trigger firmware project:
‘;% separate framework and algorithm firmware

‘;% script-based firmware build system (also enforces module structure)
‘;% git repository (with automatic nightly builds)
% formal developer and user support (ticket system)

very successful model, proven in LHC run 2 already

Kristian Harder, RAL HEP graduate lectures 2023 50

Science and

conclusion

\

Ky points:

%% FPGAs are a very powerful tool

r for low latency high throughput applications

R %% FPGA programming by firmware has many similarities
with software development, but important differences

cfai3=. | (CVUSY

§ We are moving more and more functlonallty mto FPGAS,

e.d. in L1 trigger.

y We have a lot more people who know how to write software

than how to write firmware. This has to change.

- it |

I hope I demonstrated today that writing firmware is no voodoo.

-
Science and

< S next: try it all yourself!

We will have a coffee break now,

then move to R1 PPD lab 6.

We have five PCs with an FPGA board attached
work in groups if needed

We will:
‘;% go through the design4-programming step by step

‘;% test the example on an actual FPGA
‘;% maybe try a few modifications
‘;% discuss any questions you might have

Kristian Harder, RAL HEP graduate lectures 2023 52

Science and
Technology

Facilities Council

ST {1 e I 5 T 0 - e
--- S1mpte hello wortd cexampLe

library IEEE;
use IEFE.std logic 1164.a11;
use IEEE.numeric_std.all;

L T Y S o O A T]

Library UNISIM;
& use UNISIM.vcomponents.all;

—

1120 entity top is port(

12 | sysclk : in STD_LOGIC;

131 leds : out STD_LOGIC VECTOR (7 downto O

14 . I

151 end top;

16 ¢

17

18 architecture rtl of top 1is

20 | signal clk : std logic; , _ _

21 . signal count : unsigned(30 downto 0) := (others == '0'}; 1 # Nexys A7 constraints file

22 2 set_property CFGBVS VCCO [current_design]

231 begin 3 ' set_property CONFIG VOLTAGE 3.3 [current_design]
24 1 4.

251 ibuf: BUFG 5 # System clock {106MHz)

B RAES TEF" i G | set_property IOSTANDARD LVCMOS33 [get_ports {sysclk}]
it S e 7| set_property PACKAGE_PIN E3 [get_ports sysclk]

g ¢), &« create_clock -period 10 -name sysclk [get_ports sysclk]
30 g

31 10 ' # LEDs

32 11 | set_property IOSTANDARD LVCMOS33 [get ports {leds[*]}]
33 process (clk) 12 | set_property PACKAGE PIN H17 [get _ports {leds[0]}]
34 | begin 12 | set_property PACKAGE PIN K15 [get ports {leds[1]}]
356 if rising_edge(clk) then 14 | set_property PACKAGE PIN J13 [get_ports {leds[2]}]
a count == count + 1; 15 | set_property PACKAGE PIN N14 [get_ports {leds[3]}]
i dend if 16 + set_property PACKAGE PIN R18 [get_ports {leds[4]}]
380 end process; 17 ' set_property PACKAGE FIN V17 [get ports {leds[5]}]
46 : 15 | set_property PACKAGE FIN Ul7 [get ports {leds[6]}]
41 leds <= std logic_vector(count(30 downto 23)); %I'EJ I set_property PACKAGE PIN ULE [get_ports {leds(7]}]
42

43 .

44> end rtl;

Science and
Technology
Facilities Council

- simple "hello world" example

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.numeric std.all;

Library UNISIM;
use UNISIM.vcomponents.all;

entity top is port({
sysclk @ in STD LOGIC;
leds : out STD_LOGIC VECTOR (7 downto ©);
button : in STD LOGIC);

end top;

architecture rtl of top is

signal clk : std logic;
signal count : unsigned(30 downto 0} := (others == '0'};
signal reset : std logic;
begin
ibuf: BUFG
part map{
i == sysclk,
o == clk
)
process(clk)
begin
if rising edge{clk) then
if reset = '1' then
count <= (others == '0');
else
count == count + 1;
end if;
end if;

end process;

leds == std_logic_wvector{count{30 downto 23));

process{clk)
begin
if rising_edge(clk) then
reset == button;
end if;
end process;

end rtl;

Nexys A7 constraints file
set_property CFGBYS VCCO [current designl
set property CONFIG VOLTAGE 3.3 [current design]

System clock (100MHz)
I0STANDARD LVCMOS33 [get_ports {sysclk}]
PACKAGE PIN E3 [get ports sysclk]

-period 18 -name sysclk [get ports sysclk]

set property
set property
create clock

LEDs

set property
set property
set _property
set property
set _property
set property
set property
set_property
set property

button
set property
set property

TOSTANDARD LVCMOS33 [get ports {leds[*]}]

PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN

H17
k15
J13
M14
R1&
V17
17
Ule

[get_ports
[get_ports
[get_ports
[get_ports
[get ports
[get ports
[get_ports
[get_ports

{leds[B]1}]
{leds[1]1}]
{leds[2]}]
{leds[3]}]
{leds[4]1}]
{leds[51}]
{leds[6]}]
{leds[71}1

IOSTANDARD LVCMOS33 [get ports {button}]
PACKAGE PIN N17 [get ports {button}]

