# Useful things to know about accelerators – part l

C. T. Rogers ISIS Rutherford Appleton Laboratory



Science and Technology Facilities Council

# Accelerators - A Window on Nature

- Particle accelerators provide the source for most high energy physics experiments
  - Provide high luminosity, high energy beams for colliders
  - Provide high brightness beams for secondary particle production
  - Also key technology for life sciences, engineering, chemistry
- How do they work?
  - How can we get to high energy?
  - How can we keep the beam in the accelerator?
  - How can we get to high luminosity?
- What are the main HEP facilities in the world today?
- What might HEP facilities look like in the future?



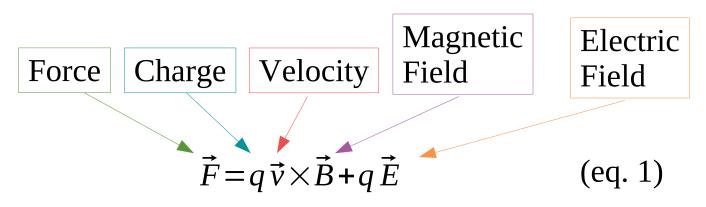
## **Accelerator Components**

- Most accelerators share similar components
- Main components of an accelerator
  - Bending dipoles
  - Focussing quadrupoles
  - Acceleration RF cavities
- Also
  - Vacuum
  - Diagnostics
  - Targets for secondary particle production
- First Lecture: Derive basic theory of accelerator physics
- Second Lecture: Discuss accelerator equipment and techniques



#### Lorentz force law

Fundamental equation for particles moving through fields

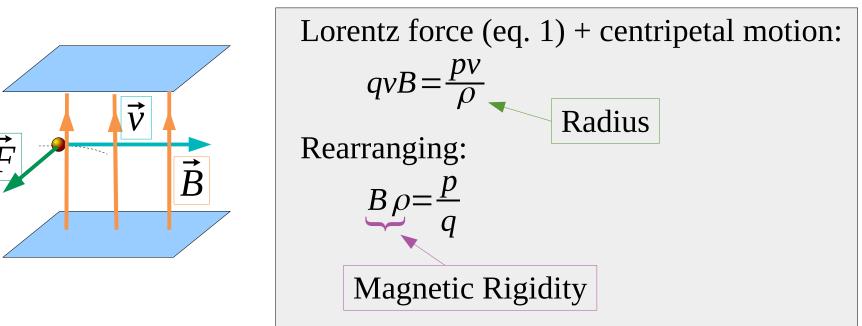


- Magnetic force is perpendicular to velocity
  - Magnetic field conserves energy
- Electric force is weaker by factor velocity
  - Magnets are better for bending and focussing



# Magnetic Rigidity and Bending

- Simplest magnet "dipole"
  - Uniform magnetic field perpendicular to beam direction



- Constant force  $\rightarrow$  constant curvature  $\rightarrow$  circular motion
- Magnetic rigidity parameterises momentum
- Charge-to-mass ratio important when accelerating multiple particle species



## Worked example – LHC

- If we wanted to accelerate, say, 7 TeV particles, what bending radius is required?
- Maximum dipole field around 8.3 T

$$B\rho = \frac{p}{q}$$

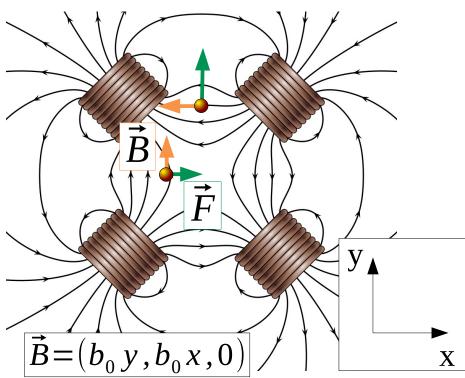
$$\rho = \frac{p}{qB} = \frac{7}{0.3 \times 8.3} = 2.8 \text{ km}$$

- Nb: LHC radius ~ 4.1 km
  - Need space for detectors, etc



# Quadrupole magnets

- If we only had bending magnets, particles would soon be lost from the accelerator
- Need to keep the particles in the accelerator using focussing elements
  - Usually use quadrupoles
- Field stronger away from beam centre
  - Like a spring or pendulum
  - Simple harmonic motion
- Overall focussing by alternating the gradient





# Quadrupole field – horizontal (1)

- For a particle moving near to the z-axis  $\vec{F} = q \vec{v} \times \vec{B} + q \vec{E}$   $\vec{B} = (b_0 y, b_0 x, 0)$
- Considering only p<sub>x</sub> for now

$$\frac{dp_x}{dt} = q \frac{dz}{dt} B_y$$

Use the chain rule

$$\frac{dp_x}{dt} = \frac{dp_x}{dz}\frac{dz}{dt}$$

Combining these equations:

$$\frac{dp_x}{dz} = q b_0 x$$



# Quadrupole field – horizontal (2)

$$\frac{dp_x}{dz} = q b_0 x \qquad \textcircled{\circ}$$

Definition of x-component of momentum

$$p_x = m \gamma v_x = m \gamma \frac{dz}{dt} \frac{dx}{dz} = p_z \frac{dx}{dz}$$

Substitute this definition into 🙂 gives

$$p_z \frac{d^2 x}{dz^2} = q b_0 x$$

 Rearrange and wrap up constant terms in focussing strength k

$$\frac{d^2x}{dz^2} - kx = 0$$



# Quadrupole field – vertical

Lorentz force law with quadrupole field definition

$$\frac{dp_y}{dt} = -q b_0 v_z y$$

Use chain rule and eliminate vz

$$p_z \frac{d^2 y}{dz^2} = -q b_0 y$$

 Rearrange and wrap up constant terms in defocussing strength k

$$\frac{d^2 y}{dz^2} + k y = 0$$



# Solutions

Motion is governed by  $\frac{d^2 x}{dz^2} - kx = 0 \qquad \frac{d^2 y}{dz^2} + ky = 0$ 

- This is simple harmonic motion solutions are of form  $x = x_0 \cos(\sqrt{k} z) + \frac{dx_0}{dz} \frac{1}{\sqrt{k}} \sin(\sqrt{k} z)$
- Taking derivative

$$\frac{dx}{dz} = -x_0 \sqrt{k} \sin(\sqrt{k} z) + \frac{dx_0}{dz} \cos(\sqrt{k} z)$$

For y

$$y = y_0 \cosh(\sqrt{k} z) + \frac{dy_0}{dz} \frac{1}{\sqrt{k}} \sinh(\sqrt{k} z)$$
$$\frac{dy}{dz} = y_0 \sqrt{k} \sinh(\sqrt{k} z) + \frac{dy_0}{dz} \cosh(\sqrt{k} z)$$



#### **Transfer Matrix**

Just thinking about x, the particles move according to

$$x_1 = x_0 \cos(\sqrt{k} z) + \frac{dx_0}{dz} \sin(\sqrt{k} z)$$
$$\frac{dx_1}{dz} = -x_0 \sqrt{k} \sin(\sqrt{k} z) + \frac{dx_0}{dz} \sqrt{k} \cos(\sqrt{k} z)$$

We can rewrite this as a matrix

$$\begin{pmatrix} x_1 \\ \frac{dx_1}{dz} \end{pmatrix} = \begin{pmatrix} \cos(\sqrt{k}z) & \frac{1}{\sqrt{k}}\sin(\sqrt{k}z) \\ -\sqrt{k}\sin(\sqrt{k}z) & \cos(\sqrt{k}z) \end{pmatrix} \begin{pmatrix} x_0 \\ \frac{dx_0}{dz} \end{pmatrix}$$

This matrix is known as the quadrupole's transfer matrix

$$\underline{u}_1 = \boldsymbol{M}_{\mathbf{01}} \underline{u}_0$$





- Exercise what is the transfer matrix for a drift space, that is a region with no fields at all?
  - What is the force acting on the particle?
  - What is x(z) in terms of dx<sub>0</sub>/dz and x<sub>0</sub>
  - What is dx/dz in terms of dx<sub>0</sub>/dz
  - Now write that as a matrix



- Exercise what is the transfer matrix for a drift space?
  - What is the force acting on the particle?
    - No force
  - What is x(z) in terms of dx<sub>0</sub>/dz and x<sub>0</sub>

$$x = x_0 + \frac{dx_0}{dz}z$$

What is dx/dz in terms of dx<sub>0</sub>/dz

$$\frac{dx}{dz} = \frac{dx_0}{dz}$$

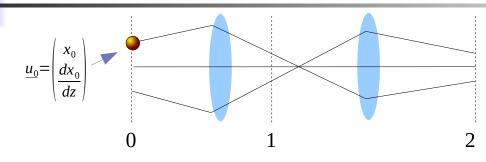
Now write that as a matrix

$$\begin{pmatrix} x \\ \frac{dx}{dz} \end{pmatrix} = \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ \frac{dx_0}{dz} \end{pmatrix}$$





## **Transfer Lines**



- Transfer matrix defines transport through a region
- Transfer matrices can be combined by multiplication
- Say we have transfer matrices like:

$$\underline{u_1} = \boldsymbol{M}_{01} \underline{u_0}$$
$$\underline{u_2} = \boldsymbol{M}_{12} \underline{u_1}$$

Then

$$\underline{u}_2 = \boldsymbol{M}_{12} \boldsymbol{M}_{01} \underline{u}_0$$

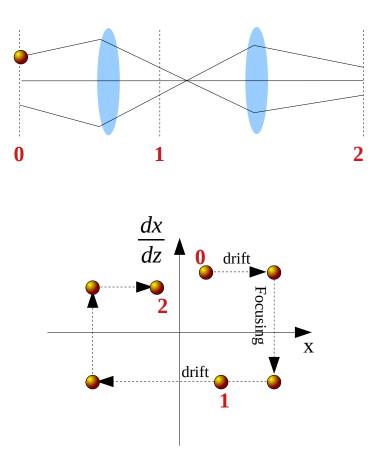
• i.e. we can define a combined transfer matrix like

$$M_{02} = M_{12} M_{01}$$



#### Phase space

 Another instructive way to look at beam optics is by considering the phase space





# Symplecticity



- There is a general rule for what transfer matrices are allowed by equations of motion
  - "Symplectic condition"
- Formally a matrix M is symplectic if it satisfies
  Identity matrix

 $\mathbf{M}^{\mathrm{T}} \mathbf{S} \mathbf{M} = \mathbf{I}$ 

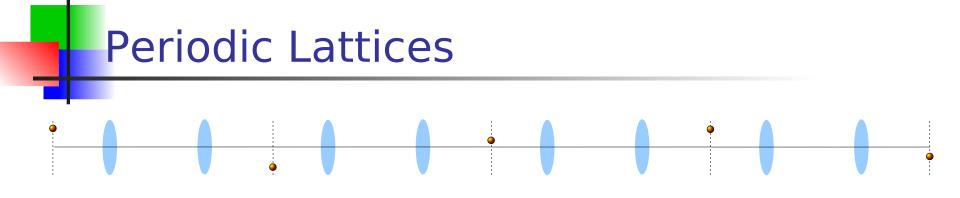
Where

$$\boldsymbol{S} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

It can be shown that any symplectic matrix M can be written as

$$\boldsymbol{M} = \boldsymbol{I} \cos \mu + \boldsymbol{J} \sin \mu$$
$$\boldsymbol{J} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} \text{ with } \gamma \beta - \alpha^2 = 1 \text{ and } \boldsymbol{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$





 Following *n* identical cells or turns in a ring with one-turn matrix *M*

$$\underline{u}_n = \boldsymbol{M}^n \underline{u}_0$$

Rewrite

 $M = I \cos \mu + J \sin \mu$   $J = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} \text{ with } \gamma \beta - \alpha^2 = 1 \text{ and } I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  $So = J^2 = -I$ 

And

$$M^n = I \cos(n\mu) + J \sin(n\mu)$$



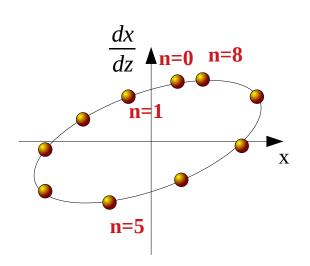
# **Periodic Lattices**

What does this mean?

 $\boldsymbol{M}^{\boldsymbol{n}} = \boldsymbol{I}\cos(n\,\mu) + \boldsymbol{J}\sin(n\,\mu)$ 

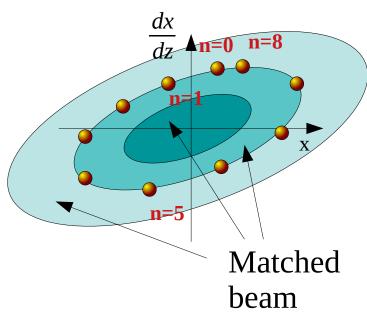
- Particles move around an ellipse in phase space if Trace(M) < 2</li>
- μ is the "phase advance"
  - Sometimes use "tune" ...  $2\pi v = \mu$
- α, β and γ are "Twiss parameters"
  - Tell us the alignment of the ellipse
- Each particle sits on ellipse area ε the particle's amplitude





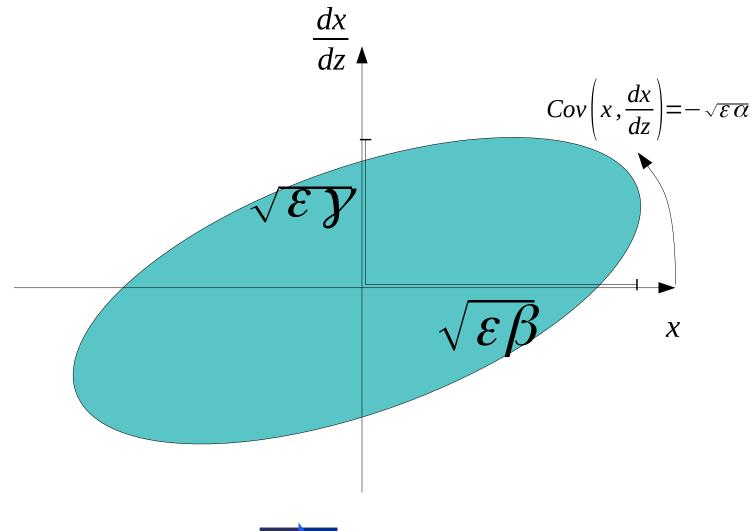
# Periodic Lattices and beams

- Beam is composed of many particles
  - Particles occupy a region in phase space
- "Emittance" is area occupied by the entire beam
- Sometimes classify "RMS emittance"
  - Area occupied by ellipse 1 RMS distance from beam centre
- Low emittance is crucial for
  - High luminosity
  - Low losses





#### Beam ellipse







- What is behaviour of particles in phase space if
  - Trace(M) < 2</li>
  - Trace(M) = 2
  - Trace(M) > 2



- What is behaviour of particles in phase space if
  - Trace(M) < 2</li>
    - Motion is an ellipse
  - Trace(M) = 2
    - x → +/- x
  - Trace(M) > 2
    - Motion is a hyperbola

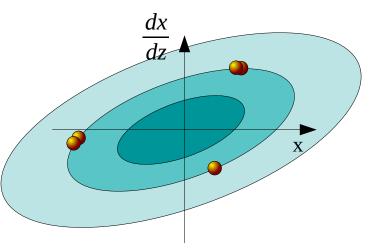


## **Emittance Growth**

- Ideally emittance is conserved, but this is not always the case
- Long list of effects that can cause emittance growth
  - Beam mismatch
  - Scattering off residual gas
  - Scattering off particles in the same beam
  - Scattering off particles in other beams (e.g. in collider)
  - Space charge
  - Resonances



#### Resonances



- Reminder:-
  - Tune ν is number of SHM oscillations per turn
  - Phase advance  $\mu = \pi \nu$  is "angle" advanced per turn
- The beam does not behave well when

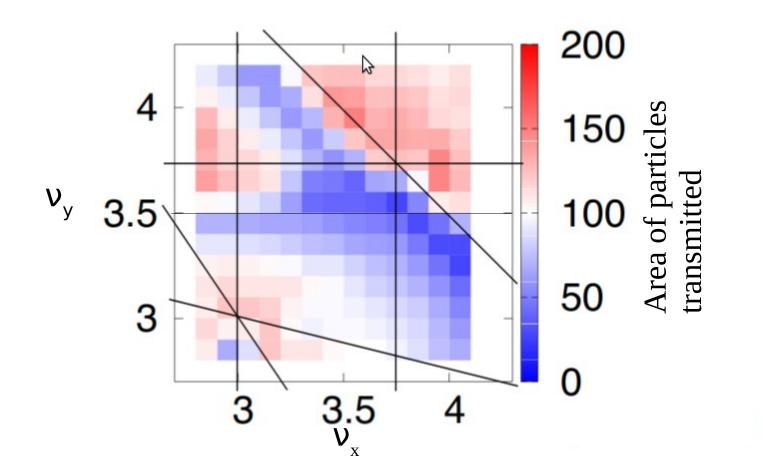
$$v_x = l + \frac{m}{n}$$
 integer

- Beam passes through the same field region every n<sup>th</sup> turn
- Imperfections in the field get amplified
- Resonance



#### Resonances

- Can see poor performance for  $v_y = 3 + \frac{1}{2}$
- Only a very small area in phase space is transmitted
- In fact, a 2D phenomenon in( $v_x$ ,  $v_y$ )

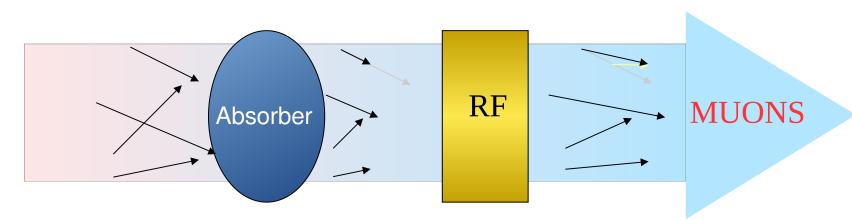


# Emittance Reduction (Cooling)

- Several techniques to reduce emittance
  - Synchrotron radiation cooling
  - Stochastic cooling
  - Laser cooling
  - Electron cooling
  - Ionisation cooling
- Fundamental principle is to remove "heat" from the beam using a neighbouring heat sink
  - Comoving electron beam → electron cooling
  - Comoving laser → laser cooling
  - Emission of synchrotron radiation
    - Photon emission caused by (principally) electrons bending in magnetic field



# E.g. Ionisation Cooling



- Beam loses energy in absorbing material
  - Absorber removes momentum in all directions
  - RF cavity replaces momentum only in longitudinal direction
  - End up with beam that is more straight
- Multiple Coulomb scattering from nucleus ruins the effect
  - Mitigate with tight focussing
  - Mitigate with low-Z materials
  - Equilibrium emittance where MCS completely cancels the cooling



# Longitudinal Dynamics and Acceleration

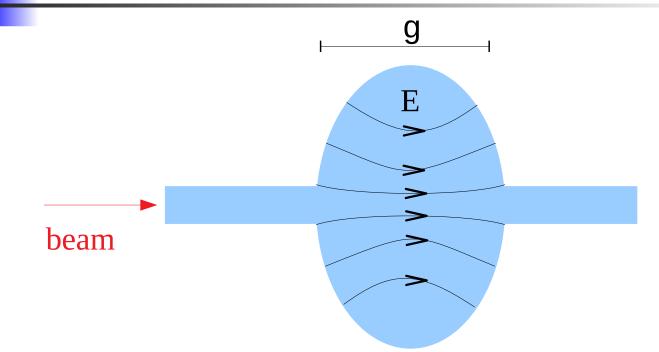


# **Longitudinal Dynamics**

- So much for transverse motion (i.e. x and y planes)
- What about energy and acceleration?
- Electrostatic acceleration limited by breakdown potential
  - Change in energy is given by voltage differential
  - High voltage differentials cause breakdown (sparks)
  - Practically limits electrostatic acceleration to few MeV
- To accelerate beyond MeV require oscillating electric field
- RF Cavities



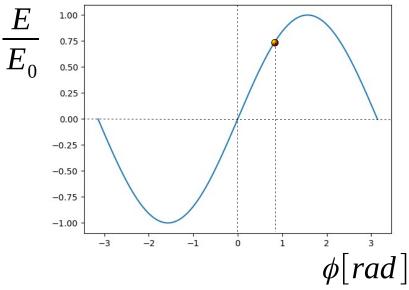
# **RF** cavity field



- RF cavity holds a resonating EM wave
- Recall Lorentz force law  $\vec{F} = q \vec{v} \times \vec{B} + q \vec{E}$
- Force is in direction of motion energy changes!



# RF cavity field



In RF cavity

 $\vec{E} = E_0 \sin(\omega t + \phi)$ 

- Energy change of synchronous particle crossing at  $\phi_s$  $\delta W = qTgE_0 \sin(\phi_s)$ 
  - T is factor to allow for phase to vary a bit during crossing
  - g is the gap length

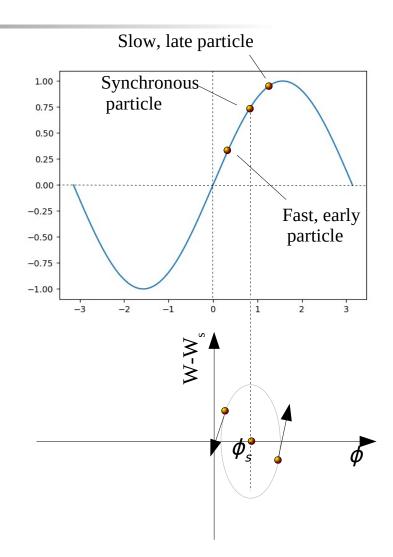


# Phase stability

 Particle crossing at phase *φ* relative to synchronous particle

 $\delta W = q T g E_0 \sin(\phi + \phi_s)$ 

- Particle arriving early
  - Fast
  - t negative
  - Gets smaller energy kick
  - Ends up relatively slower
- Particle arriving late
  - Slow
  - t positive
  - Gets bigger energy kick
  - Ends up relatively faster
- Phase stability!





# Dealing with momentum spread

- Momentum spread introduces a few effects
  - Dispersion
  - Chromaticity
  - Momentum compaction
- Dispersion:
  - Off-momentum particles follow a different trajectory
- Momentum compaction (rings):
  - Different path length yields different time of flight
- Chromaticity:
  - Off-momentum particles get a different focussing strength





Recall the definition of magnetic rigidity

$$B\rho = \frac{p}{q}$$

- Particles having different momentum (p) get different radius of curvature
  - Introduce dispersion D

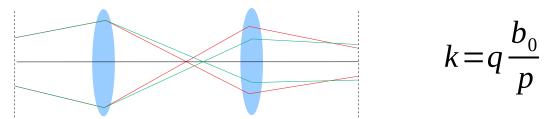
$$D = p \frac{dx}{dp}$$

 Which is another optical function that we must make periodic



# Chromaticity

 Chromaticity arises because quadrupoles focus differently for different momenta



- This often limits the degree of focussing at a collision point
  - Limits luminosity
- Can deliberately enhance/reduce chromaticity by
  - Introduce a dispersion
  - Using a magnet with variable focussing strength across the aperture - "sextupole"





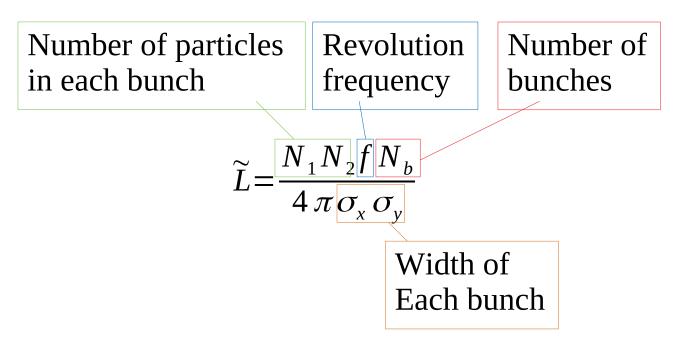
# Review

- Dipoles are used to bend a beam rigidity is  $B\rho = \frac{p}{r}$
- Quadrupoles are used to focus a beam:  $k = q \frac{b_0}{r}$
- Beam in each of x and y can be characterised by 3 Twiss parameters and an emittance
- Lattices can be characterised by a phase advance
- RF cavities are used to accelerate the beam
- Introducing momentum spread, one can also define a dispersion (and its derivative with respect to z)



# Finally... luminosity

- Luminosity defines the number of interactions in a collider per unit time for a given cross section
- Luminosity will increase if
  - Beam is narrower
  - Current is higher





## What dictates luminosity?

$$\widetilde{L} = \frac{N_1 N_2 f N_b}{4 \pi \sigma_x \sigma_y}$$

- Typically
  - Number of particles → space charge
  - Revolution frequency → ring circumference
  - Number of bunches  $\rightarrow$  RF frequency
  - Beam width  $\rightarrow \sqrt{\varepsilon \beta}$ 
    - Emittance (cooling?)
    - Twiss beta (final focus and chromaticity)



#### Next lecture...

- Accelerator equipment
- Types of accelerator
- Current facilities
- Future facilities



# Backup



## Transverse Space Charge 1

Consider a circular beam of radius *a* having uniform density

$$\rho(r) = q \frac{I}{\beta_{rel} c \pi a^2} \qquad r < a$$
• Quote field around a cylinder of charge/curre
$$E(r) = \frac{1}{2\pi\varepsilon_0} \frac{I}{\beta_{rel} c} \frac{r}{a^2}$$

$$B_{\phi}(r) = \frac{1}{2\pi\varepsilon_0} \frac{I}{c^2} \frac{r}{a^2}$$
• Apply Lorentz force law
$$\vec{F} = q \vec{v} \times \vec{B} + q \vec{E}$$

$$F_r = q \vec{v} \times \vec{B} + q \vec{E} = \frac{1}{2\pi\varepsilon_0} \frac{r}{a^2} (\frac{I}{\beta_{rel} c} - \frac{I}{\beta_{rel} c} \beta_{rel}^2) = \frac{1}{2\pi\varepsilon_0} \frac{r}{a^2} (\frac{I}{\gamma^2 \beta_{rel} c} - \frac{I}{\gamma^2 \beta_{rel} c} \beta_{rel}^2) = \frac{1}{2\pi\varepsilon_0} \frac{r}{a^2} (\frac{I}{\gamma^2 \beta_{rel} c} - \frac{I}{\gamma^2 \beta_{rel} c} \beta_{rel}^2) = \frac{1}{2\pi\varepsilon_0} \frac{r}{a^2} (\frac{I}{\gamma^2 \beta_{rel} c} - \frac{I}{\gamma^2 \beta_{rel} c} \beta_{rel}^2)$$

Technology

**Facilities** Council

ŘÏ

# Transverse Space Charge 2

Force is defocusing

$$\frac{d^2 x}{dz^2} - (k - K_{sc}) x = 0 \quad \text{with}$$

Treat SC as a perturbation

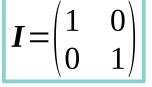
$$M_{p} = M M_{sc}$$
$$M = I \cos \mu + J \sin \mu$$
$$M_{sc} = \begin{pmatrix} 1 & 0 \\ -K_{sc} & 1 \end{pmatrix}$$

- Change of beam size (β)
- Change of phase advance
  - Drive the beam onto resonances  $\rightarrow$  ruin the acceptance
- Phase advance  $\rightarrow$  look at Trace of  $M_{D}$

#### $Tr(\boldsymbol{M}_{p}) = 2\cos(\mu) + \alpha\sin(\mu) - \alpha\sin(\mu) + \beta K\sin(\mu)$



$$K_{sc} = \frac{1}{2 \pi \varepsilon_0} \frac{1}{a^2} \left( \frac{I}{\gamma_{rel}^3 \beta_{rel}^2 c} \right)$$



$$J = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

#### Transverse Space Charge 3

- Consider just the  $trace(M_p)$  $Tr(M_p)=2\cos(\mu)+\beta K\sin(\mu)$
- Consider compound angle formula  $\cos(\mu + \delta\mu) = \cos(\mu)\cos(\delta\mu) + \sin(\mu)\sin(\delta\mu)$   $\cos(\mu + \delta\mu) \simeq \cos(\mu) + \sin(\mu)\sin(\delta\mu)$
- Looking at the tune

$$\delta v = \frac{\delta \mu}{2\pi} = \frac{\beta K}{4\pi}$$
$$\delta v = \frac{r_0 N}{2\pi\epsilon\beta_{rel}^2 \gamma_{rel}^3}$$

$$K_{sc} = \frac{1}{2 \pi \varepsilon_0} \frac{1}{a^2} \left( \frac{I}{\gamma_{rel}^3 \beta_{rel}^2 c} \right)$$

$$\sigma(x) = \sqrt{\beta \epsilon}$$

