Science and
Technology Facilities Council

FETS-FFA lattice and extension to higher energy

Shinji Machida UKRI/STFC Rutherford Appleton Laboratory

1 June 2023
ISIS-II/LhARA common themes

FETS-FFA lattice

FETS-FFA lattice (latest)

- 4-fold superperiod lattice
- Orbit radius at injection at drift space is 3.6 m .

100
80
60
Dynamic aperture is ~ 100 pi mm mrad at maximum.

$\left[Q_{u}=3.06\right]$

Figure 2.8: 3 MeV and 12 MeV orbits for 16 operating points.

	doublet 1	doublet 2	doublet 3	doublet 4
$r_{\min }[\mathrm{m}]$	3.5835	3.7143	3.6684	3.5900
$r_{\max }[\mathrm{m}]$	4.1688	4.2695	4.3561	4.2324
orbit excursion [mm]	585	555	688	642

Table 2.2: Horizontal beam size and acceptance

	normalised	un-normalised	
$[\pi \mathrm{mm}$ mrad $]$	Physical size $[\pi \mathrm{mm}$ mrad $]$	$[\mathrm{mm}]$	
beam core	10	125	± 20
collimator acceptance	20	250	± 28
physical acceptance	$40-80$	$500-100$	$\pm 40-57$

Table 2.5: Vertical beam size and acceptance

	normalised $[\pi \mathrm{mm}$ mrad $]$	un-normalised $[\pi \mathrm{mm}$ mrad $]$	Physical size $[\mathrm{mm}]$
beam core	10	125	± 16
collimator acceptance	20	250	± 23
physical acceptance	$40-80$	$500-100$	$\pm 32-45$

Baseline lattice changed!

16-fold symmetry
Straight length: 0.95 m
Dynamic aperture: 110 pi mm mrad Field index k: 8.00
Spiral angle: 45 degree
Magnet families: 2

4-fold symmetry
Straight length: $1.55 \mathrm{~m}, 0.90 \mathrm{~m}, 0.45 \mathrm{~m}$ Dynamic aperture: 80 pi mm mrad Field index k: 7.40
Spiral angle: 30 degree Magnet families: 8

Horizontal beam size is larger.

Comparison between FETS-FFA and LhARA

Goals (success criteria)

FETS-FFA	LhARA
Demonstrate a high intensity FFA operation with minimum beam loss.	Demonstrate acceleration of multiple ions with variable energy (and variety of time structure for Stage 1).
- Transverse emittance and aperture	- Transverse emittance and aperture
- - Large	- Small
- Momentum spread - Small	- Momentum spread - Large
- Pulse length - micro second	- Pulse length - micro second

Parameters (physics)

	FETS-FFA (16-fold sym)	FETS-FFA (4-fold sym)	LhARA	notes
Momentum	p: 0.075-0.151 GeV/c [3-12 MeV]	<- same	$\begin{gathered} \text { p: } 0.168-0.504 \mathrm{GeV} / \mathrm{c}[15-127 \mathrm{MeV}] \\ \mathrm{C}^{6}+: 0.173-0.505 \mathrm{GeV} / \mathrm{c} \\ \hline \end{gathered}$	$\begin{aligned} & \text { x } 2.3 \text { at inj } \\ & \times 3.3 \text { at ext } \\ & \hline \end{aligned}$
Radius	4.0-4.42 m	4.0-4.8 m (now 3.6-4.4 m)	2.92-3.48m	
Number of cell	16	4 per s.p. and 4 s.p makes a ring	10	
Lattice	Doublet (FD) spiral	<- same	Single (F) spiral	
Magnet packing factor	F: 0.20, D: 0.10	<- same	F: 0.34	
Nominal total and cell tune	$\begin{gathered} (3.41,3.39) \\ (0.213125,0.211875) \end{gathered}$	<- same	$\begin{gathered} (2.83,1.22) \\ (0.283,0.122) \end{gathered}$	
Number of particle	A few ${ }^{1011}$ protons	<- same	10^{9} protons	$\sim 1 / 100$
Physical emittance	125 pi mm mrad (100\%)	<- same	0.41 pi mm mrad (RMS)	~1/1000
Dynamic aperture	> 1250 pi mm mrad	<- same	> 300 pi mm mrad	
Momentum spread	A few 0.1\%	<- same	$\begin{gathered} +/-2 \% \text { at inj } \\ +/-0.5 \% \text { at ext } \end{gathered}$	
Initial bunch length	~300 ns	<- same	8.1 ns (right after injection)	$\sim 1 / 100$
Space charge tune shift	-0.3	<- same	-0.8	~10

Parameters (hardware)

	FETS-FFA (16-fold sym)	FETS-FFA (4-fold sym)	LhARA	notes
Maximum field	0.9 T	1.4 T (to be lowered)	1.4 T	Definition may be different
Spiral angle	45 degree	30 degree	48.7 degree	Spiral angle
Magnet families	2	8	1	Magnet families
Nominal kvalue	8.00	7.40	5.33	Nominal kvalue
Field index k and spiral	$k=6-11$ and 45 degree	$\mathrm{k}=6-9$ and 30 degree	$\mathrm{k}=5.33$ and 48.7 degree	Tuneability is essential for reta ren
Magnet gap	$\sim 120 \mathrm{~mm}$	<- same	47 mm	
Repetition of RF	$100-120 \mathrm{~Hz}$	<- same	$10-100 \mathrm{~Hz}$	
RF frequency	$1.8-3.4 \mathrm{MHz}$	<- same	$2.89-6.48 \mathrm{MHz}$	
RF voltage	6 kV	<- same	4 kV	
Straight length	0.95 m	1.55, 0.90, 0.45 m	1.21 m	Straight length

Science and
Technology
Facilities Council

Extension to higher energy with 16 -fold symmetry lattice

Can FETS-FFA and LhARA share the design?

- Both lattices look similar (spiral FFA), but
- FETS-FFA has more constraint, i.e. tune choice ($Q x \sim Q y$) for high intensity operation.
- FFAS-FFA uses doublet (normal and reverse bend) while LhARA uses singlet (normal bend only).
- Due to reverse bends, injection and extraction momentum have to be lower in FETS-FFA with similar circumference.
- At injection, particle momentum is x2.3 higher in LhARA.

Is it possible to FETS-FFA lattice for higher momentum?

Eliminate reverse bends

- Very roughly, a normal magnet bends theta and a reverse magnet bends -0.25 theta

- Without a reverse bend,
- Net bend = \theta
- Momentum can be 33% more or energy 78% more.
- FETS-FFA 3-12 MeV lattice can accept up to $\mathbf{2 1} \mathbf{~ M e V}$.
- If the maximum field of the magnet is $\sim 1.4 \mathrm{~T}$ instead of $\sim 0.9 \mathrm{~T}$, the top energy could be higher
- Another gain of a factor 2 makes $\sim 50 \mathrm{MeV}$.

How about using both Bf and Bd as normal bends?

- Very roughly, a normal magnet bends \theta and a reverse magnet bends $-0.25 \backslash$ theta
- Net bend = \theta $-0.25 \backslash$ theta/2 $=0.75 \backslash$ theta (nominal FETS-FFA design).
- With both Bf and Bd as normal bends,
- Net bend $=$ \theta +0.25 ltheta $=1.25$ theta
- Momentum can be 67% more or 2.8 times higher in energy.
- FETS-FFA 3-12 MeV lattice can accept up to 34 MeV .
- However, field gradient k-value has to be smaller.
- Orbit excursion is roughly doubled when k change from 6 to 3.
- Unless the magnet aperture is wider than the baseline design, the max energy is limited by horizontal aperture.
- Max energy is similar to Bf only lattice.
- k-value becomes smaller because the edge angle is smaller.

Extension to higher energy with 4-fold symmetry lattice

FETS-FFA baseline is now 4-fold lattice

- FETS-FFA lattice evolved since I have done the calculation in the previous pages.
- Main differences which have an impact to this study is
- Spiral angle is now 30 degree (45 degree before).
- Maximum field is $20 \sim 30 \%$ higher than before.
- On the other hand, the number of magnet families is 8 (2 before).
- We could test many different excitation pattern. Previously only (Bf, O) and (Bf, Bf).
- e.g. (Bf1,0, Bf2,0, Bf3,0, Bf4,0), (Bf1,Bf1’, Bf2,Bf2', 0,0, Bf4, Bf4'), etc.

5 different ways of operation (no reverse bend)

FETS-FFA

(3.41, 3.39)
$\mathrm{k}=7.49$
12 MeV

(2.18, 1.05)
k=3.59
19.5 MeV

Possible ways to extend maximum energy

(2.87, 1.35)
$\mathrm{k}=5.07$
19.7 MeV

(1.68, 1.77)
k=1.55
20.2 MeV

(1.48, 1.31)
k=1.06
$30.9 \mathrm{MeV}^{*}$

Without constraints of maximum beta function

(2.18, 0.51) $\mathrm{k}=4.5$
41 MeV

(2.19, 0.26)
k=3.8
36 MeV

(1.65, 1.45)
k=1.5
32 MeV

(1.68, 1.52)
k=1.5
34 MeV

(1.49, 1.09)
k=1.1
61 MeV*

Science and Technology Facilities Council

* Injection energy has to be above 40 MeV .

Conclusion

Conclusion

- By eliminating reverse bend magnets or change the polarity of reverse bends, top energy of FETSFFA can be higher than 12 MeV .
- 16 -fold symmetry lattice (with modest increase of magnetic field) can accept beams up to $\sim 50 \mathrm{MeV}$.
- 4-fold symmetry lattice (new baseline) can accept beams up to $\sim 40 \mathrm{MeV}$
- or $\sim 60 \mathrm{MeV}$ but injection energy has to be more than 15 MeV or vacuum aperture has to be larger.

Thank you for your attention

An option to increase momentum range in FETS-FFA

Eliminate the reverse bends. Make the strength zero Similar to LhARA lattice with only normal bends.

References

https://www.frontiersin.org/articles/10.3389/fphy.2020.567738/full
https://indico.stfc.ac.uk/event/487/contributions/3923/attachments/1375/2428/
FFA2022 JPasternak LhARA.pdf

My personal summary

- FETS-FFA is a more demanding FFA: double (FD) spiral, tuneability, space charge mitigation, etc.
- Hardware development goals are similar.
- If we have a decent design of FETS-FFA, it will work for LhARA except momentum acceptance is not enough.
- LhARA design requirements can be satisfied to some extent with (minor) modifications of FETSFFA.
- Increase maximum field.
- Increase good field region to accommodate momentum ratio of 3 (FETS-FFA is 2).
- Single turn injection system without charge exchange.
- Have to redo the calculation for 4-fold symmetry baseline lattice.

