

Science and Technology Facilities Council

FETS-FFA lattice and extension to higher energy

Shinji Machida UKRI/STFC Rutherford Appleton Laboratory

1 June 2023 ISIS-II/LhARA common themes

Science and Technology Facilities Council

FETS-FFA lattice

FETS-FFA lattice (latest)

Baseline lattice changed!

16-fold symmetry

Straight length: 0.95 m Dynamic aperture: 110 pi mm mrad Field index k: 8.00 Spiral angle: 45 degree Magnet families: 2

4-fold symmetry

Straight length: **1.55 m**, 0.90 m, 0.45 m Dynamic aperture: 80 pi mm mrad Field index k: 7.40 Spiral angle: 30 degree Magnet families: 8

Horizontal beam size is larger.

Comparison between FETS-FFA and LhARA

Goals (success criteria)

FETS-FFA

Demonstrate a high intensity FFA operation with minimum beam los

- Transverse emittance and apertu
 Large
- Momentum spread Small
- Pulse length micro second
- # of particles 10¹¹ protons

	LhARA			
SS.	Demonstrate acceleration of multiple ions with variable energy (and variety of time structure for Stage 1).			
ure	 Transverse emittance and aperture Small Momentum spread - Large Pulse length - micro second # of particles - 10⁹ protons 			

Parameters (physics)

	FETS-FFA (16-fold sym)	FETS-FFA (4-fold sym)	LhARA	notes
Momentum	p: 0.075 - 0.151 GeV/c [3 - 12 MeV]	<- same	p: 0.168 - 0.504 GeV/c [15 - 127 MeV] C ⁶⁺ : 0.173 - 0.505 GeV/c	x 2.3 at inj x 3.3 at ext
Radius	4.0 - 4.42 m	4.0 - 4.8 m (now 3.6 - 4.4 m)	2.92 - 3.48 m	
Number of cell	16	4 per s.p. and 4 s.p makes a ring	10	
Lattice	Doublet (FD) spiral	<- same	Single (F) spiral	
Magnet packing factor	F: 0.20, D: 0.10	<- same	F: 0.34	
Nominal total and cell tune	<mark>(3.41, 3.39)</mark> (0.213125, 0.211875)	<- same	<mark>(2.83, 1.22)</mark> (0.283, 0.122)	
Number of particle	A few 10 ¹¹ protons	<- same	10 ⁹ protons	~1/100
Physical emittance	125 pi mm mrad (100%)	<- same	0.41 pi mm mrad (RMS)	~1/1000
Dynamic aperture	> 1250 pi mm mrad	<- same	> 300 pi mm mrad	
Momentum spread	A few 0.1%	<- same	+/- 2% at inj +/- 0.5% at ext	
Initial bunch length	~300 ns	<- same	8.1 ns (right after injection)	~1/100
Space charge	-0.3	<- same	-0.8	~10

Parameters (hardware)

	FETS-FFA (16-fold sym)	FETS-FFA (4-fold sym)	LhARA	notes
Maximum field	0.9 T	1.4 T (to be lowered)	1.4 T	Definition may be different
Spiral angle	45 degree	30 degree	48.7 degree	Spiral angle
Magnet families	2	8	1	Magnet families
Nominal k- value	8.00	7.40	5.33	Nominal k- value
Field index k and spiral	k = 6 - 11 and 45 degree	k = 6 - 9 and 30 degree	k = 5.33 and 48.7 degree	Tuneability is essential for
Magnet gap	~ 120 mm	<- same	47 mm	
Repetition of RF	100 - 120 Hz	<- same	10 - 100 Hz	
RF frequency	1.8 - 3.4 MHz	<- same	2.89 - 6.48 MHz	
RF voltage	6 kV	<- same	4 kV	
Straight length	0.95 m	1.55, 0.90, 0.45 m	1.21 m	Straight length

Extension to higher energy with 16-fold symmetry lattice

Science and Technology Facilities Council

Can FETS-FFA and LhARA share the design?

• Both lattices look similar (spiral FFA), but

- FETS-FFA has more constraint, i.e. tune choice (Qx~Qy) for high intensity operation.
- circumference.
 - At injection, particle momentum is x2.3 higher in LhARA.

Is it possible to FETS-FFA lattice for higher momentum?

Science and Technology **Facilities** Council

• FFAS-FFA uses doublet (normal and reverse bend) while LhARA uses singlet (normal bend only).

• Due to reverse bends, injection and extraction momentum have to be lower in FETS-FFA with similar

Eliminate reverse bends

- Very roughly, a normal magnet bends \theta and a reverse magnet bends -0.25\theta
 - Net bend = \theta 0.25\theta = 0.75\theta (nominal FETS-FFA design).
- Without a reverse bend,
 - Net bend = \theta
- Momentum can be 33% more or energy 78% more.
 - FETS-FFA 3 12 MeV lattice can accept up to 21 MeV.
- If the maximum field of the magnet is ~1.4 T instead of ~0.9 T, the top energy could be higher
 - Another gain of a factor 2 makes ~50 MeV.

How about using both Bf and Bd as normal bends?

- Very roughly, a normal magnet bends \theta and a reverse magnet bends -0.25\theta • Net bend = $\theta - 0.25 \theta = 0.75 \theta = 0.$ FETS-FFA design). 0*B_y [T] • Net bend = theta + 0.25 theta = 1.25 theta3 • FETS-FFA 3 - 12 MeV lattice can accept up to 34 MeV. 2 tune
- With both Bf and Bd as normal bends,
- Momentum can be 67% more or 2.8 times higher in energy. • However, field gradient k-value has to be smaller.
- - Orbit excursion is roughly doubled when k change from 6 to 3.
 - Unless the magnet aperture is wider than the baseline design, the max energy is limited by horizontal aperture.
 - Max energy is similar to Bf only lattice.
- k-value becomes smaller because the edge angle is smaller.

Extension to higher energy with 4-fold symmetry lattice

Science and Technology Facilities Council

FETS-FFA baseline is now 4-fold lattice

- FETS-FFA lattice evolved since I have done the calculation in the previous pages.
- Main differences which have an impact to this study is
 - Spiral angle is now 30 degree (45 degree before).
 - Maximum field is 20~30% higher than before.
- On the other hand, the number of magnet families is 8 (2 before).

 - e.g. (Bf1,0, Bf2,0, Bf3,0, Bf4,0), (Bf1,Bf1', Bf2,Bf2', 0,0, Bf4,Bf4'), etc.

• We could test many different excitation pattern. Previously only (Bf,0) and (Bf,Bf').

5 different ways of operation (no reverse bend)

Science and Technology **Facilities** Council

* Injection energy has to be above 20 MeV.

Without constraints of maximum beta function

Science and Technology **Facilities** Council

Possible ways to extend maximum energy Bf2=Bd2=0Bd2=0 [ш] 3 → 2 [ш] 5 ∧ 2 [⊑] ³ > 2 Bf3=0 Bf3=Bd3=0 Bf, Bd>0 0 [∟] U 0 2 3 x [m] 2 3 x [m] 5 3 5 5 0 4 4 4 b_x b_x b_x b_v b_v beta [m] beta [m] beta [m] 3 0 _ 0 ∟ 0 0 ∟ 0 22.5 45 67.5 angle [degree] 22.5 45 67.5 angle [degree] 67.5 67.5 90 22.5 90 67.5 90 (1.65, 1.45)(1.68, 1.52)k=1.5 k=1.5 k=1.1 **32 MeV 34 MeV** 61 MeV*

* Injection energy has to be above 40 MeV.

Conclusion

Science and Technology Facilities Council

Conclusion

- By eliminating reverse bend magnets or change the polarity of reverse bends, top energy of FETS-FFA can be higher than 12 MeV.
- 16-fold symmetry lattice (with modest increase of magnetic field) can accept beams up to ~50 MeV.
- 4-fold symmetry lattice (new baseline) can accept beams up to ~40 MeV
- or ~60 MeV but injection energy has to be more than 15 MeV or vacuum aperture has to be larger.

Thank you for your attention

An option to increase momentum range in FETS-FFA

Eliminate the reverse bends. Make the strength zero. Similar to LhARA lattice with only normal bends.

FETS-FFA (Bd and Bf)

References

https://www.frontiersin.org/articles/10.3389/fphy.2020.567738/full

https://indico.stfc.ac.uk/event/487/contributions/3923/attachments/1375/2428/ FFA2022_JPasternak_LhARA.pdf

My personal summary

- Hardware development goals are similar.
- is not enough.
- FFA.
 - Increase maximum field.

 - Single turn injection system without charge exchange.
- Have to redo the calculation for 4-fold symmetry baseline lattice.

• FETS-FFA is a more demanding FFA: double (FD) spiral, tuneability, space charge mitigation, etc.

• If we have a decent design of FETS-FFA, it will work for LhARA except momentum acceptance

LhARA design requirements can be satisfied to some extent with (minor) modifications of FETS-

Increase good field region to accommodate momentum ratio of 3 (FETS-FFA is 2).

