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Laser-hybrid Accelerator for
Radiobiological Applications

LhARA



Our ambition is to:
* Deliver a systematic and definitive radiation biology programme
* Prove the feasibility of laser-driven hybrid acceleration
* Lay the technological foundations for the transformation of PBT

— automated, patient-specific proton and ion beam therapy




Radiotherapy; the challenge

Cancer: second most common cause of death globally
— Radiotherapy indicated in half of all cancer patients

Significant growth in global demand anticipated:
— 14.1 million new cases in 2012 > 24.6 million by 2030
— 8.2 million cancer deaths in 2012 -» 13.0 million by 2030

Scale-up in provision essential:
— Projections above based on reported cases (i.e. high-income countries)
— Opportunity: save 26.9 million lives in low/middle income countries by 2035

Atun, Lancet Oncol. 2015 Sep;16(10):1153-86

Provision on this scale requires:
— Development of new and novel techniques ... integrated in a
— Cost-effective system to allow a distributed network of RT facilities



Particle-beam therapy

Bragg Peak

Proton Beam

10
Depth in tissue (cm)

Proton and ion-beam therapy:
— Bulk of dose deposited in Bragg peak
— Significant normal-tissue sparing (entry)
— Almost no dose beyond the Bragg peak




Particle beam therapy today

* Cyclotron based:

— Limitations:
* Energy modulation
e Instantaneous dose rate

= reduce footprint,
cost and complexity
‘PBT for the many’! s

= increase flexibility

optimize treatments MedAustron
Austria

* Synchrotron based:
— Limitiations:
 Complexity
e Instantaneous dose rate




The case for fundamental radiobiology

Relative biological effectiveness:
— Defined relative to reference X-ray beam

— Known to depend on:
* Energy, ion species
* Dose & dose rate
* Tissue type
* Biological endpoint

Yet:
— p-treatment planning uses 1.1
— Effective values are used for C®*

Maximise the efficacy of PBT now & in the
future:

— Require systematic programme to develop
full understanding of radiobiology

van Luijk
(2013)

Paganetti,
SemRadOncol}
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Radiobiology in new regimens

Worked example: FLASH

Conventional regime: ~2 Gy/min
FLASH regime : >40 Gy/s

Evidence of normal-tissue sparing while tumour-kill probability is maintained:
i.e. enhanced therapeutic window

Time line:

e Confirmation in mini-pig & cat: 2018 (Clin. Cancer Research 2018)

* First treatment 2019 (Bourhis et al, Rad.Onc. Oct 2019)




Radiobiology in new regimens

. Prezado et al
Worked example: micro beams

Conventional regime: > 1 cm diameter; homogeous
Microbeam regime :<1 mm diameter; no dose between ‘doselets’

Remarkable increase of normal rat brain resistance.
[E.g. Dilmanian et al. 2006, Prezado et al., Rad. Research 2015]

Dose escalation in the tumour possible — larger tumor control prob.




Radiobiology in new regimens

Time
domain

The ideally
flexible beam facility
can deliver it all!

 Breakage of chemical
ase bonds

« Free radical formation

* Repair processes
* Apoptosis

* Stress response
« Cell proliferation

—> substantial
opportunity for a
step-change in
understanding!

« Early side effects
(necrosis, inflammation)

* Late side effects
(fibrosis, oncogenesis)

‘Source: Expert Rev Proteomics © 2013 Expert Reviews Ltd

Energy

In combination
and with chemo/immuno Therapies
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Laser-hybrid Accelerator for Radiobiological Applications

A novel, hybrid, approach: L h A _R___.

* Laser-driven, high-flux proton/ion source |
— Overcome instantaneous dose-rate limitation
* Capture at >10 MeV

— Delivers protons or ions in very short pulses
* Bunches as short as 10—40 ns

— Triggerable; arbitrary pulse structure

Chemical phase
t=10°-10°s

* Novel “electron-plasma-lens” capture & focusing
— Strong focusing (short focal length) without the use of high-field solenoid

* Fast, flexible, fixed-field post acceleration
— Variable energy

Front. Phys., 29 September 2020; DOI: 10.3389/fphy.2020.567738

LhARA performance summary

e Protons: 15—127 MeV ‘ 1 12MeV grotons 15 MeV Ié’otons 127 MeV grotons 33.4
Dose per pulse 3.
* lons: 5—34 MEV/U Instantaneous dose rate | 1.0 x 109 Gy/s | 1.8 x 10°Gy/s | 3.8 x 108 Gy/s 9.7 x 108 Gy/s

Average dose rate 71 Gyls 128 Gy/s 156 Gy/s 730 Gy/s



s o o o LhARA to serve ITRF Preliminary Activity

lon Therapy Research Facility

1. Schematic diagram of the lon Therapy Research Facility

Preliminary Activity: £2M over 2 years
project start October 2022
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= compact, uniquely flexible facility ’
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Radiobiological Appli




Matching Optimisation

§ 0 N=27E+04
0.012 - I Oy, N = 2.7E+04

0 5 10 15 20
S/m

- Optimised solutions for /.5, 6.25, & 5.0 mm spot size with space charge

- Smaller beams remains focus of ongoing work.
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Preliminary Collimator Investigation
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- Beam spectrum reduced to =+ 2% spread at the end station
- Modest losses - transmission > ~ 80%

- Further optimisation required.
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Stage 2: Injection line
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Dy (m)

- Excellent agreement
between BDSIM and PTC
with idealised beam (10k
primaries) for the
baseline.

- Space charge
optimisations required.

- Update needed to
incorporate the shielding
wall between the Stage 1
room and the FFA room.



*N

* Kk

« Spiral angle
R
¢ Rmin

* (Qx, Qy)

® Bmax

* Pr

* Max Proton injection energy

» Max Proton extraction energy
*h

* RF frequency

max

2.92 m
(2.83, 1.22)
147

0.34

15 MeV
127.4 MeV
1

for proton acceleration (15-127.4MeV) 2.89 — 6.48 MHz

* Bunch intensity

up to ~10° protons

» Range of other extraction energies possible

* Other ions also possible
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LhARA FFA ring tracking

LhARA Ring Tracking °
-0.1¢
-0.2
* Performed using proven stepwise tracking code —_0.3|
* |t takes into account fringe fields and non-linear field components @ .
* Results show dynamical acceptances are much larger than physical ones
* No space charge effects included yet —0.5¢
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FFA Ring subsystems

Laser-hybrid Accelerator for
Radiobiological Applications

Parameter unit value extraction

extraction
Injection septum: extraction line /@@ﬂ septum
nominal magnetic field T 0.53 7 A
magnetic length m 0.9 QQ
deflection angle degrees | 48.7 _ _@ RF cavity
thickness cm | E
full gap cm 3
pulsing rate Hz 10
Extraction septum:
nominal magnetic field T 1.12
magnetic length m 0.9 A m
deflection angle degrees | 34.38
thickness cm 1
full gap cm 2 ‘ L/ main magnet
pulsing rate Hz 10
Injection kicker:
magnetic length m 0.42
magnetic field at the flat top T 0.05 \
deflection angle mrad 374 ‘l
fall time ns | 320 =
flat top duration ns 25 =
full gap cm 3 &7
Extraction kicker: injection line
magnetic length m 0.65 %j@
magnetic field at the flat top T 0.05 switching % - %
deflection angle mrad 19.3 . red
rise time ns 110 dipole ‘Ea m
flat top duration ns 40
full gap cm 2

21t March 2023



Ongoing & Next Steps

- Vlasov solver for co-propagating beams

- Continued optimisation for spot size flexibility
- Collimator & octupole settings

- RF cavity performance

- Wien filter for particle selection

- Alternative lattices (quadrupoles)

- FFA tunability

- Injection line redesign

- Stage 2 beam transport optimisation

- RF & FFA magnet conceptual designs

21
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- Last 6 months saw a very significant progress in Stage 1
studies

Development of the components naming scheme and BDSIM/CAD

iInterface

In understanding the input beam properties

- Still more studies needed, especially to include effects from the
electron distribution

Space charge optimisation with GPT

- Verification with a different code in progress

Development of the flexible optics with a new baseline candidate

- Stage 2 has a solid baseline, but further updates are
required

Foundations for the FFA magnet and RF cavity conceptual designs
has been established

22
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