

C

K. Long 1 June, 2023

Laser-hybrid Accelerator for Radiobiological Applications

LhARA

the Laser-hybrid Accelerator for Radiobiological Applications

Our ambition is to:

- Deliver a systematic and definitive radiation biology programme
- Prove the feasibility of laser-driven hybrid acceleration
- Lay the technological foundations for the transformation of PBT
 - automated, patient-specific proton and ion beam therapy

Radiotherapy; the challenge

- Cancer: second most common cause of death globally
 - Radiotherapy indicated in half of all cancer patients
- Significant growth in global demand anticipated:
 - 14.1 million new cases in 2012 → 24.6 million by 2030
 - − 8.2 million cancer deaths in 2012 ---> 13.0 million by 2030
- Scale-up in provision essential:
 - Projections above based on reported cases (i.e. high-income countries)
 - Opportunity: save 26.9 million lives in low/middle income countries by 2035
- Provision on this scale requires:
 - Development of new and novel techniques ... integrated in a
 - Cost-effective system to allow a distributed network of RT facilities

Particle-beam therapy

Proton and ion-beam therapy:

- Bulk of dose deposited in Bragg peak
- Significant normal-tissue sparing (entry)
- Almost no dose beyond the Bragg peak

Particle beam therapy today

- **Cyclotron based:**
 - Limitations:
 - **Energy modulation**
 - Instantaneous dose rate ۲
- \Rightarrow reduce footprint, cost and complexity 'PBT for the many'!

- \Rightarrow increase flexibility optimize treatments
- Synchrotron based:
 - Limitiations:
 - Complexity
 - Instantaneous dose rate ۲

Christie Hospital Manchester

The case for fundamental radiobiology

- Relative biological effectiveness:
 - Defined relative to reference X-ray beam
 - Known to depend on:
 - Energy, ion species
 - Dose & dose rate
 - Tissue type
 - Biological endpoint
- Yet:
 - p-treatment planning uses 1.1
 - Effective values are used for C⁶⁺
- Maximise the efficacy of PBT now & in the future:
 - Require systematic programme to develop full understanding of radiobiology

Radiobiology in new regimens

Worked example: FLASH

Conventional regime: ~2 Gy/min FLASH regime : >40 Gy/s

Evidence of normal-tissue sparing while tumour-kill probability is maintained: i.e. enhanced therapeutic window

Time line:

- Initial reports: 2014 (e.g. Flauvadon et al, STM Jul 2014)
- Confirmation in mini-pig & cat: 2018 (Clin. Cancer Research 2018)
- First treatment 2019 (Bourhis et al, Rad.Onc. Oct 2019)

Radiobiology in new regimens

Prezado et al

Worked example: micro beams

Conventional regime: > 1 cm diameter; homogeous Microbeam regime : < 1 mm diameter; no dose between 'doselets'

Remarkable increase of normal rat brain resistance.

[E.g. Dilmanian et al. 2006, Prezado et al., Rad. Research 2015]

Dose escalation in the tumour possible – larger tumor control prob.

Radiobiology in new regimens

Space

domain

Energy

Time The ideally flexible beam facility can deliver it all! \Rightarrow substantial

opportunity for a step-change in understanding!

Multidisciplinary approach essential In combination and with chemo/immuno Therapies

Ò

XIII

21

Laser-hybrid Accelerator for Radiobiological Applications

A novel, hybrid, approach:

- Laser-driven, high-flux proton/ion source
 - Overcome instantaneous dose-rate limitation
 - Capture at >10 MeV
 - Delivers protons or ions in very short pulses
 - Bunches as short as 10-40 ns
 - Triggerable; arbitrary pulse structure
- Novel "electron-plasma-lens" capture & focusing

5-34 MeV/

- Strong focusing (short focal length) without the use of high-field solenoid
- Fast, flexible, fixed-field post acceleration
 - Variable energy
 - Protons: 15-127 Me
 - lons:

	LhARA p	erformance summ	ary	arXiv:2006.004
	12 MeV Protons	15 MeV Protons	127 MeV Protons	33.4 MeV/u Carbor
Dose per pulse	7.1 Gy	12.8 Gy	15.6 Gy	73.0 Gy
Instantaneous dose rate	$1.0 imes 10^9$ Gy/s	$1.8 imes 10^9$ Gy/s	$3.8 imes 10^8$ Gy/s	$9.7 imes 10^8$ Gy/s
Average dose rate	71 Gy/s	128 Gy/s	156 Gy/s	730 Gy/s

LhARA to serve ITRF Preliminary Activity

Preliminary Activity: £2M over 2 years project start October 2022

	2022	- 1	2022		2024		2025		2020		20	27	1	2020		202	0	~	120		2021	_	1
	2022		2023		2024		2025		2026		20.	27		2028		202	9	20	130		2031		
	Q2 Q3 Q	4 Q1	Q2 Q3	Q4 Q1	Q2 Q3 Q	4 01	Q2 Q3	Q4 Q1	Q2 Q	3 Q4 Q	Q1 Q2	Q3 Q4	Q1	Q2 Q3	Q4 Q	1 Q2	Q3 Q4	21 Q2	Q3 (Q4 Q1	Q2 Q3	Q4 Q1	·
reliminary Activity (PA)									· · · · ·			ļļ	Ļ						. .	ļ	ļ	ĻĻ.	
Preconstruction programme			ļ	ļļ					ļļ				1		44.				44				
Facility construction				ļ. ļ.						Stag	e 1				1.1.		Stage 2						
Facility exploitation																							
1 A D A Perulation of Anti-Maximum Devicement and Device and a standard and a standards																							
autor remninary activity and re-construction rhose, principal milescones	1	-									-												
			Lh		Channel																		
					Stoge .																		
									30	oge z in	-												
W/D1 · Project Management	1																						
L hAPA CDP status undate											-												
Linder Constants																							
L bara TDR1											-												
L bARA TOR																							
	4									-													
WP2: Laser-driven source																							
One-to-one simulation of proton source design																							
Experimental demonstration of low repetition LhARA specification proton source		_																					
Experimentally motivated specification of LhARA laser				_																			
Experimental generation of stabilised S Hz beam																							
	1																						
WP3: Proton and ion capture	1																						
Validation of Plasma simulation against Swansea Expt.																							
Next generation plasma lens testbench design		_																					
Progress report - standalone plasma apparatus																							
Ion focussing results and final plasma lens design																							
WP4: Ion-acoustic dose mapping																							
Preliminary Geant4 simulations				_																			
Acoustic sensor array design																							
Preliminary report on reconstruction methods																							
LhARA ion acoustic test results																							
WP5: End-station development																							
Initial end station inputs				_																			
End station design																							
Beam monitoring specification																							
End station and beam monitoring results																							
	•																						
WPb: Facility design and integration											_												
Interim report on design and integration, LNAKA CDR																							
Design and integration, LhARA CDR							<u> </u>		<u> </u>		-												
Design and integration, LhARA TDR1	1				1				1														
Design and integration, LhARA TDR2					1				1														

Access

In Vivo

Matching Optimisation

- Optimised solutions for 7.5, 6.25, & 5.0 mm spot size with space charge
- Smaller beams remains focus of ongoing work.

Preliminary Collimator Investigation

- Beam spectrum reduced to ± 2% spread at the end station
- Modest losses transmission > ~ 80%
- Further optimisation required.

Stage 2: Injection line

- Excellent agreement between BDSIM and PTC with idealised beam (10k primaries) for the baseline.
- Space charge optimisations required.
- Update needed to incorporate the shielding wall between the Stage 1 room and the FFA room.

21st March 2023

LhARA baseline FFA ring parameters

- Range of other extraction energies possible
- Other ions also possible

21st March 2023

• k

• h

LhARA FFA ring tracking

61.8

LhARA Ring Tracking

- Performed using proven stepwise tracking code
- It takes into account fringe fields and non-linear field components
- Results show dynamical acceptances are much larger than physical ones
- No space charge effects included yet
- Tracking performed using FixField code

 \cap

-0.1

-0.2

-0.3

[_]

FFA Ring subsystems

Parameter	unit	value					
Injection septum:							
nominal magnetic field	Т	0.53					
magnetic length	m	0.9					
deflection angle	degrees	48.7					
thickness	cm	1					
full gap	cm	3					
pulsing rate	Hz	10					
Extraction septum:							
nominal magnetic field	Т	1.12					
magnetic length	m	0.9					
deflection angle	degrees	34.38					
thickness	cm	1					
full gap	cm	2					
pulsing rate	Hz	10					
Injection kicker:							
magnetic length	m	0.42					
magnetic field at the flat top	Т	0.05					
deflection angle	mrad	37.4					
fall time	ns	320					
flat top duration	ns	25					
full gap	cm	3					
Extraction kicker:							
magnetic length	m	0.65					
magnetic field at the flat top	Т	0.05					
deflection angle	mrad	19.3					
rise time	ns	110					
flat top duration	ns	40					
full gap	cm	2					

21st March 2023

- Vlasov solver for co-propagating beams
- Continued optimisation for spot size flexibility
- Collimator & octupole settings
- RF cavity performance
- Wien filter for particle selection
- Alternative lattices (quadrupoles)
- FFA tunability
- Injection line redesign
- Stage 2 beam transport optimisation
- RF & FFA magnet conceptual designs

- Last 6 months saw a very significant progress in Stage 1 studies
 - Development of the components naming scheme and BDSIM/CAD interface
 - In understanding the input beam properties
 - Still more studies needed, especially to include effects from the electron distribution
 - Space charge optimisation with GPT
 - Verification with a different code in progress
 - Development of the flexible optics with a new baseline candidate
- Stage 2 has a solid baseline, but further updates are required
 - Foundations for the FFA magnet and RF cavity conceptual designs has been established