
Authentication and
Authorisation for
the WLCG
An introduction to the key concepts, and
how they fit within the WLCG Space

Who am I?
I currently wear multiple Authentication and
Authorisation hats…
• Service Manager for the Identity and Access

Management service for the U.K. IRIS Collaboration
• Current Authorisation Working Group Chair for the

WLCG
• Scrum master for the SKA agile team working on

Authentication and Authorisation Infrastructure (AAI)
Working to ensure that all these communities (and
others!) can interoperate

Questions? Feel free to contact at:
thomas.dack@stfc.ac.uk

mailto:thomas.dack@stfc.ac.uk

1 Introduction to AuthN & AuthZ
…and why does it matter anyway

2 AuthN & AuthZ For the WLCG

3 AuthN & AuthZ: Certificates &
VOMS

4 AuthN & AuthZ: Tokens

Agenda

Im
ag

e
©

 S
TF

C
 A

la
n

Fo
rd

5 Towards Tokens for WLCG

• What is the difference between Authentication and Authorisation
• An understanding of why this is important for research
• A basic understanding of the existing Certificate and VOMs

infrastructure
• A more in-depth understanding of the OAuth and OIDC

protocols
• A brief overview of the planned token transition for WLCG

Take Aways

Introduction to
Authentication &
Authorisation
…and why does it matter anyway

• Letting everyone access everything
is often a bad idea

• Though this is not always true – the
level of access control required
involves considering the risks

• In the contest of research, we
probably don’t want anyone and
everyone online being able to get
in…

Authentication and Authorisation
Or, Not letting everyone in

Authentication and Authorisation
Controlling access depends on:
• Verifying a user’s access to an account or identity – authentication (AuthN)
• Knowing that a user is allowed to do what they want to do – authorisation (AuthZ)

These processes are usually combined, as key processes in a community’s
Authentication and Authorisation Infrastructure - AAI

SIDE NOTE:
• AuthoriZation -🇺🇸 & 🇨🇦
• AuthoriSation -🇬🇧 & the rest of the English-speaking world

I will have typed AuthoriSe, except in occurrences where it is a
named term or attribute

… also I use the Americanised shorthand, AuthZ

Authentication and Authorisation - Then

Traditionally a user would need to Authenticate separately to every new
service or account they wanted to use

• Lots of accounts, scattered through every site a user has ever signed up for
• This results in many username and password pairs, which in turn leads to

bad security practices
• Credentials are reused for “simplicity”, or simply forgotten and lost

Authentication and Authorisation - Now

In more modern applications, the process is evolving
• Increased importance of account credibility

• Processes and systems in place to show that an associated identity is
verified

• Increased adoption of single sign-on mechanisms, using a unified identity
• Log-in with Social IDs, such as Facebook, Google, ORCID

• Can grant authorised access based on an identity’s attributes
• Home institute, email address, etc

What makes AAI important for research?

A couple of key concepts underpin the use of identity in research:
• Confidentiality
• Traceability
• Suspension
• Attribution

What makes this important for research?
A couple of key concepts underpin this:
• Confidentiality
• Traceability
• Suspension
• Attribution Confidentiality

• Whilst final research outputs are public,
maintaining confidentiality before this point is
important

• Particularly important for fields handling personal
and medical data

What makes this important for research?
A couple of key concepts underpin this:
• Confidentiality
• Traceability
• Suspension
• Attribution Traceability

• If something goes wrong – accidentally or
maliciously – service owners need to be able to
trace where this happened

• Knowing which account caused an issues is
important for both support or suspension

What makes this important for research?
A couple of key concepts underpin this:
• Confidentiality
• Traceability
• Suspension
• Attribution Suspension

• Processes to suspend an individual user account in
case of compromise or malicious activity

• Avoids downtime caused by stopping an entire
service or resource, by isolating the problematic
identity

What makes this important for research?
A couple of key concepts underpin this:
• Confidentiality
• Traceability
• Suspension
• Attribution

Attribution

• A single central identity provides a mechanism
through which research can be attributed

• ORCID is an example of this – life-long identifiers
for researchers, which can be attached to
publications, grant requests, etc

• Identity changes can present problems – name
changes from marriage, gender transition, etc

Tumblr – The Internet by Nedroid / January 30th, 2013

https://nedroidcomics.tumblr.com/post/41879001445/the-internet

AuthN & AuthZ
For the WLCG

AuthN & AuthZ for the WLCG

Providing global access to computing resources – not easy!

• Global user community, with many members
• Distributed single infrastructure
• Not guaranteed that users know each other
• Not guaranteed that users will ever meet

Need a system for provisioning access, to be trusted across the grid

• Not guaranteed that users know each other

Who can you trust to know the users, in order to authenticate them?

Many options, including:
• The Infrastructure
• The Experimental Group or Research Community
• The Home Organisations
• A trusted Third Party

In most cases, a user’s Home Organisation may have the most current
information – especially if their access is a function of their affiliation.

• Not guaranteed that users will ever meet

But! A user’s Experimental Group or Research Community may be better
placed to tell you…

• Which group the user belongs to
• What roles (permissions) they should have

• what are they authorised to do
• Are they a user, an admin, a super-user, etc?

• The status of a user’s policy acceptance – e.g. whether they have accepted
the latest acceptable usage policy

AuthN & AuthZ for the WLCG

Need to bring these concepts together in order to control access to the grid

We’ll look at an overview of how this is done for the WLCG, looking at both
the current system and the intended migration infrastructure:

Current: Future:
Certificates & VOMS Tokens & IAM

AuthN & AuthZ:
Certificates & VOMS

X.509 – a Recap

A Certificate is…
• A digital identity, representing an entity

• could be a service/website, a machine, or a human individual
• Signed by a Certificate Authority (CA)

• Self-signed certificates do exist but are not useful for authentication purposes!
• Signed by taking a hash of the certificate, which is then encrypted with the CA’s private

key
• Long lived – typically a grid certificate will last a year
• User keeps an accompanying private key and password

VOMS - Virtual Organization Membership Service

VOMS is the certificate-based AAI for the WLCG
• A central attribute authority, and central repository for VO user information
• Enables sorting of users into group hierarchies, storing roles and other

attributes
• This is used to issue trusted attribute certificates which can then be used in

the Grid environment for authorisation purposes.

VOMS - Virtual Organization Membership Service
The typical VOMS user flow is as follows
• The user registers at the CERN User Office and with their experiment secretariat, and the

user is entered into the CERN HR database.
• The user gets a certificate from any eligible Certificate Authority
• The user registers with VOMS Admin for their VO and presents their certificate to

authenticate. Their email address is matched with their record in the CERN HR database
to confirm that their identity has been verified. The VO manager approves the registration.
From that time on, the HR ID is used as the unique ID in the VOMS DB, allowing the e-
mail address to be changed independently at either end.

• VOMS attributes, such as groups and roles, are maintained by VO Managers.
• The user can submit jobs to the grid or access data on the grid by saving their User

Certificate locally, running voms-proxy-init to generate the VOMS proxy, and running the
relevant grid command; their proxy will get delegated to grid services as needed.

Proxy Certificates?
A Proxy Certificate is generated and signed
using a user’s certificate
• As it is signed by the user, the proxy

certificate acts as a proof of identity – can
be used for authentication

A VOMS Proxy adds extra, VO specific,
information to the proxy – such as roles
• This adds authorisation information to

the proxy

Proxy certificates are short lived, and can be
used to in turn sign further proxies –
therefore allowing for delegated access on
behalf of the user

AuthN & AuthZ:
Tokens

…Tokens?
There are a few components in a token flow. Key to this, a token is…
• a JSON Web Token

• “JWTs are an open, industry standard RFC 7519 method for representing claims
securely between two parties.” https://jwt.io/introduction/

• Tokens are encoded strings of data, issued by an issuer with which the client (receiver)
has a trusted relationship.

• In this context, JWTs are used to communicate authentication and
authorization information using the OAuth 2.0 and OIDC protocols

OAuth 2.0 OIDC
Open Authorization Open ID Connect

https://jwt.io/introduction/

Oauth 2.0 – the Access Token

• An open standard for access delegation, and most often used for allowing
users to grant a website access to their information on another website,
without giving them their password
• Examples include signing into a third-party website using your Google, GitHub, or

Orcid account
• An access token is provided to the third party, from whichever service is

acting as the Authorization Server, which it can then use to retrieve a
protected resource

Want to know more about OAuth after the lecture?

https://oauth.net/

https://oauth.net/

AuthZ

Oauth 2.0 – Terminology
• Protected Resource

• The identity or data which is to be shared
• eg: your email address, or the ability to post to your Twitter

• Resource Owner
• The user who owns the Protected Resource
• eg: you!

• Client
• The application that wants access on behalf of the Resource Owner
• eg: the website you want to register with using your Google identity

• Authorisation Server
• The application which knows the Resource Owner, and where the Resource Owner already

has an account
• eg: The Google, Twitters, Orcids of the world

• Resource Server
• Where the Protected Resource lives, and what the Client wants to use
• eg: the API from which the Client can access the Protected Resource

Resc

Client

Owner

AuthZ

Oauth 2.0 – Terminology
• Protected Resource

• The identity or data which is to be shared
• eg: your email address, or the ability to post to your Twitter

• Resource Owner
• The user who owns the Protected Resource
• eg: you!

• Client
• The application that wants access on behalf of the Resource Owner
• eg: the website you want to register with using your Google identity

• Authorisation Server
• The application which knows the Resource Owner, and where the Resource Owner already

has an account
• eg: The Google, Twitters, Orcids of the world

• Resource Server
• Where the Protected Resource lives, and what the Client wants to use
• eg: the API from which the Client can access the Protected Resource

Resc

Client

Owner
A quick aside…
OAuth 2.0 defines two types of clients:
Confidential and Public Clients

• Confidential applications can hold credentials with which they use
to authenticate themselves to the AuthZ Server in a secure way.
They require a trusted backend server to store the secret(s).

• eg – a web application with a secure backend

• Public clients cannot hold credentials securely.
• eg – a native desktop or mobile application, or a JavaScript-based

client-side web application (single-page app)

OAuth 2.0 – How things work

Client

AuthZ

Resc

Authorisation Request

Authorisation Grant

Access Token Request w AuthZ Grant

Access Token

Resource Request with Access Token

Protected Resource

Client AuthZ
Server

Resource
Server

Owner

Owner Authorisation

Owner

OAuth 2.0 – Authorisation Grants

• The OAuth 2.0 framework specifies several different methods through
which a Client can verify itself to the Authorisation Server - these are
known as Authorisation Grants
• Authorisation Code
• PKCE
• Client Credentials
• Device Code
• Refresh Token

Key Authorisation Grant Concepts

• Redirect URL – a URL at the client which the AuthZ
server will deliver an issued token to

• ClientID – the “username” of the client
• ClientSecret – the “password” of the client

OAuth 2.0 – Authorisation Grants

• The OAuth 2.0 framework specifies several different methods through
which a Client can verify itself to the Authorisation Server - these are
known as Authorisation Grants
• Authorisation Code
• PKCE
• Client Credentials
• Device Code
• Refresh Token

Authorisation Code

• Used by both confidential and public clients
• An authorisation code is exchanged for an access

token
• When the user returns to the client via the

Redirect URL, the Authorisation Code is extracted
from the URL and used to obtain the Access Token

OAuth 2.0 – Authorisation Grants

• The OAuth 2.0 framework specifies several different methods through
which a Client can verify itself to the Authorisation Server - these are
known as Authorisation Grants
• Authorisation Code
• PKCE
• Client Credentials
• Device Code
• Refresh Token

Authorisation Code

• Used by both confidential and public clients
• An authorisation code is exchanged for an access

token
• When the user returns to the client via the

Redirect URL, the Authorisation Code is extracted
from the URL and used to obtain the Access Token

https://example.com/oauth/auth?
response_type=code
&scope=EXAMPLE_REQUESTED_SCOPES
&client_id=EXAMPLE_CLIENTID
&redirect_uri=EXAMPLE_REDIRECT_URI

OAuth 2.0 – Authorisation Grants

• The OAuth 2.0 framework specifies several different methods through
which a Client can verify itself to the Authorisation Server - these are
known as Authorisation Grants
• Authorisation Code
• PKCE
• Client Credentials
• Device Code
• Refresh Token

Authorisation Code

• Used by both confidential and public clients
• An authorisation code is exchanged for an access

token
• When the user returns to the client via the

Redirect URL, the Authorisation Code is extracted
from the URL and used to obtain the Access Token

curl --header "Authorization: Basic EXAMPLE_SECRET"
--data "grant_type=authorization_code&code=EXAMPLE_CODE"
--request POST https://example.com/oauth/token

OAuth 2.0 – Authorisation Grants

• The OAuth 2.0 framework specifies several different methods through
which a Client can verify itself to the Authorisation Server - these are
known as Authorisation Grants
• Authorisation Code
• PKCE
• Client Credentials
• Device Code
• Refresh Token

PKCE: Proof Key for Code Exchange

• An extension to Authorisation Code, which aims
to prevent Cross Site Request Forgery (CSRF) and
authorisation code injection attacks

• Not a replacement for a ClientSecret, and
therefore does not enable treating a Public Client
as Confidential

OAuth 2.0 – Authorisation Grants

• The OAuth 2.0 framework specifies several different methods through
which a Client can verify itself to the Authorisation Server - these are
known as Authorisation Grants
• Authorisation Code
• PKCE
• Client Credentials
• Device Code
• Refresh Token

Client Credentials

• Must ONLY be used by Confidential Clients
• The Client authenticates itself directly with the

Authorization Server, for example using it’s ClientID and
ClientSecret pair or with an public/private key pair

• As Client Authentication is used as the Authorisation grant,
no further AuthZ is required

• Often used for a client to obtain information about itself

OAuth 2.0 – Authorisation Grants

• The OAuth 2.0 framework specifies several different methods through
which a Client can verify itself to the Authorisation Server - these are
known as Authorisation Grants
• Authorisation Code
• PKCE
• Client Credentials
• Device Code
• Refresh Token

Client Credentials

• Must ONLY be used by Confidential Clients
• The Client authenticates itself directly with the

Authorization Server, for example using it’s ClientID and
ClientSecret pair or with an public/private key pair

• As Client Authentication is used as the Authorisation grant,
no further AuthZ is required

• Often used for a client to obtain information about itself

curl --request POST \
--url 'https://EXAMPLE/oauth/token’ \
--header 'content-type: application/x-www-form-urlencoded’ \
--data grant_type=client_credentials \
--data client_id=EXAMPLE_CLIENT_ID \
--data client_secret=EXAMPLE_CLIENT_SECRET \
--data audience=EXAMPLE_AUDIENCE

OAuth 2.0 – Authorisation Grants

• The OAuth 2.0 framework specifies several different methods through
which a Client can verify itself to the Authorisation Server - these are
known as Authorisation Grants
• Authorisation Code
• PKCE
• Client Credentials
• Device Code
• Refresh Token

Device Code

• This flow is intended for use by browserless or input
constrained clients – such as command line

• The user is directed to visit a URL at the AuthZ Server in a
separate browser, along with a user code to identify the
device

• The original device continuously polls the AuthZ server with
the generated device code until the user completes the
interaction, the code expires, or another error occurs

OAuth 2.0 – Authorisation Grants

• The OAuth 2.0 framework specifies several different methods through
which a Client can verify itself to the Authorisation Server - these are
known as Authorisation Grants
• Authorisation Code
• PKCE
• Client Credentials
• Device Code
• Refresh Token

Device Code

• This flow is intended for use by browserless or input
constrained clients – such as command line

• The user is directed to visit a URL at the AuthZ Server in a
separate browser, along with a user code to identify the
device

• The original device continuously polls the AuthZ server with
the generated device code until the user completes the
interaction, the code expires, or another error occurs

OAuth 2.0 – Authorisation Grants

• The OAuth 2.0 framework specifies several different methods through
which a Client can verify itself to the Authorisation Server - these are
known as Authorisation Grants
• Authorisation Code
• PKCE
• Client Credentials
• Device Code
• Refresh Token

Refresh Token

• This is a mechanism for allowing a client to get a
new Access Token after an initial one has expired,
without further user interaction

• Not a replacement for a ClientSecret, and
therefore does not enable treating a Public Client
as Confidential

OAuth 2.0 – Authorisation Grants

• The OAuth 2.0 framework specifies several different methods through
which a Client can verify itself to the Authorisation Server - these are
known as Authorisation Grants
• Authorisation Code
• PKCE
• Client Credentials
• Device Code
• Refresh Token

Refresh Token

• This is a mechanism for allowing a client to get a
new Access Token after an initial one has expired,
without further user interaction

• Not a replacement for a ClientSecret, and
therefore does not enable treating a Public Client
as Confidential

To get a Refresh token, the client needs to request the scope:
scope=offline_access&

curl --request POST \
--url 'https://{yourDomain}/oauth/token’ \
--header 'authorization: Basic {yourApplicationCredentials}’ \
--header 'content-type: application/x-www-form-urlencoded’ \
--data grant_type=refresh_token \
--data 'client_id={yourClientId}’ \
--data 'refresh_token={yourRefreshToken}

Oauth 2.0 – the Access Token

• OAuth is an Authorisation flow – does not have a method for user
Authentication

• Enter…
OpenID Connect: OIDC

OIDC: The ID Token

• OpenID Connect (OIDC) is an identity layer on top of the base OAuth 2.0
protocol

• OIDC provides the ability for app and web developers to authenticate users
without the need to directly store credential sets

• OIDC enables the Authorisation Server to act as an Identity Provider
(IdP). An OAuth 2.0 Authorisation Server implementing OIDC is also
referred to as an OpenID Provider (OPs).

• A client which uses an OP for authentication is a Relying Party (RPs).
• OIDC identifies a set of personal attributes that can be exchanged between

Identity Providers and the apps that use them, and includes an approval
step so that users can consent (or deny) the sharing of this information

Want to know more about OIDC after the lecture

https://openid.net/connect/

https://openid.net/connect/

OIDC: The ID Token

• In OAuth flows involving a user, the user will authenticate with the
Authorisation Server before providing consent for the server to release
information to the client. OpenID Connect utilises this process to
authenticate to the client

• The Token Endpoint will provide two separate tokens: a standard OAuth
Access Token, and the OIDC ID Token.

• The ID Token will contain information about the user pertaining to what the
client has requested

• When the client receives the ID Token, it may then read off requested
claims

OIDC: Requesting Info with Scopes

• When the client makes its token request, it must use Scopes to specify
which privileges are being requested in the token

• In OAuth 2.0, Scopes correspond to what resources are available when a
protected resource is accessed

• In OIDC, Scopes correspond to the specific sets of information to be made
available as Claim Values

• OIDC defines a set of standard Scopes, but does allow additional Scope
values to be defined and used

https://example.com/oauth/auth?
response_type=code
&scope=openid%20profile%20email
&client_id=EXAMPLE_CLIENTID
&redirect_uri=EXAMPLE_REDIRECT_URI

OIDC: Default Scopes
as defined by OIDC Core

Claim Summary

openid REQUIRED. Informs the Authorization Server that the Client is making an OpenID Connect
request. If the openid scope value is not present, the behaviour is entirely unspecified.

profile OPTIONAL. This scope value requests access to the End-User's default profile Claims, which are:
name, family_name, given_name, middle_name, nickname, preferred_username,
profile, picture, website, gender, birthdate, zoneinfo, locale, and
updated_at.

email OPTIONAL. This scope value requests access to the email and email_verified Claims.

address OPTIONAL. This scope value requests access to the address Claim

phone OPTIONAL. This scope value requests access to the phone_number and
phone_number_verified Claims.

offline_access OPTIONAL. This scope value requests that an OAuth 2.0 Refresh Token be issued that can be used
to obtain an Access Token that grants access to the End-User's UserInfo Endpoint even when the
End-User is not present (not logged in).

OIDC: Default Token Required Claims
as defined by OIDC Core

Claim Summary

iss REQUIRED: Issuer identifier for who issued the response. This is a
case sensitive URL

sub REQUIRED: Subject identifier. A locally unique identifier which
must never be reassigned, this identifies the user within the
issuer. A case sensitive string ≤ 255 ASCII characters in length

aud REQUIRED: Audiences that this token is intended for, using the
Client ID as its identifying value.

exp REQUIRED: Expiration time for the token, after which it MUST
NOT be used for processing.

iat REQUIRED: Time at which the JWT was issued

auth_time Time when end-user authentication occurred. If a max_age
request is made or auth_time is requested as an essential
claim, this is REQUIRED – otherwise it is OPTIONAL

{ "iss":
"https://server.example.com",
"sub": ”24400320",
"aud": "s6BhdRkqt3”,
"exp": 1311281970,
"iat": 1311280970,
"auth_time": 1311280969”

}

OIDC: Standard Identity Claims
as defined by OIDC Core

Claim Summary

name The end-user’s full name, including all name parts. given_name, family_name,
middle_name and nickname may also be used.

preferred_username A shorthand name by which the user wishes to be referred to by at the RP. This MAY be any valid
JSON string – including special characters such as @, /, or whitespace. The RP MUST NOT rely on
this value being unique.

email End-User's preferred e-mail address. Its value MUST conform to the RFC 5322 addr-spec syntax.
The RP MUST NOT rely upon this value being unique.

phone_number End-user’s preferred telephone number.

address End-User's preferred postal address.

profile URL of the End-User's profile page. The contents of this Web page SHOULD be about the End-
User.

... And others picture, website, email_verified, gender, birthdate, zoneinfo,
locale, phone_number_verified, updated_at

OIDC: Additional Claims

• The OpenID Connect Core specification only defines the previous small set
of claims as standard

• However, OP’s MAY provide additional claims about the End-User
• A typical example includes groups, a list of groups the user is registered

with at the OP
• Any additional Claim will need to have a corresponding Scope, to allow it to

be requested
• Alternatively, extra claims could be included within the profile scope

– this is how the OP to be used within the exercises provides its
groups claim

OIDC: Putting this together…

The token is
three Base64-
URL strings
separated by
dots that can be
easily passed in
HTML and HTTP
environments

Handy token
decoding taken
from:
https://jwt.io/

Check it out for
more info on JWTs
or when using
them yourself!

https://jwt.io/

OIDC: Putting this together…

OIDC: Putting this together…

🙂

OIDC: Putting this together…
JWK signing key published at a URL at the OP,
such as:
https://wlcg.cloud.cnaf.infn.it/jwk
The specific URL is detailed in the OP
metadata, found at:
.well-known/openid-configuration

For Example:
https://wlcg.cloud.cnaf.infn.it/.well-
known/openid-configuration

https://wlcg.cloud.cnaf.infn.it/jwk
https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration
https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration

OIDC: UserInfo Endpoint

• The ID token is not the only way for a RP to get information about a user –
it can also make a request to the Ops UserInfo endpoint

• A UserInfo Request is made by the client using either a HTTP GET or HTTP
POST. The Access Token previously obtained from an OIDC Authentication
request MUST be included as a Bearer Token

• The OIDC Core recommendation is that the request uses the HTTP GET
method, with the Access Token sent using the Authorization header
field

GET /userinfo HTTP/1.1
Host: server.example.com
Authorization: Bearer SlAV32hkKG

A non-normative example
of a UserInfo Request:

Towards Tokens
for WLCG

Transition to Tokens - Motivations
• OAuth and OIDC protocols have been adopted by a wide range of software and systems,

thanks to their prevalence in industry – in particular within the social identity space
• This prevalence enables developers to utilise developed libraries, and facilitates

integration and interoperability

• Certificates, whilst established within WLCG, are not familiar outside this context - and are
often viewed as unintuitive. Conversely, Token-based flows are becoming increasingly
commonplace, and can lead to a better user experience as a result

Token Authentication and Authorisation
Infrastructure
• In the planned WLCG infrastructure, there will be an OP per VO, which

users may access using their CERN Account
• This model unifies the IdP and Research community, with both being

represented by the Token Issuer
• The Infrastructure design has been informed by the AARC Blueprint

architecture - a set of software building blocks that can be used to
implement federated access management solutions for international
research collaborations

The AARC
Blueprint

WLCG Token Infrastructure Design

WLCG Token Infrastructure Design

WLCG Token Infrastructure Design
CERN SSO releases:

● Name,
● Email,
● CERN Person ID (indicates
HR has performed ID check),
● CERN Kerberos Principal
● ...

Currently all researchers have
CERN accounts but aim is to work
towards removing this need in
future

CERN Person ID is
checked against CERN HR
DB. Affiliation with
Virtual Organisation
(experiment) is verified,
as well as end dates.
If the check is OK, the
membership
is approved.

WLCG Token Infrastructure Design

RCAuth integration possible
to generate short lived X.509 certs
for backwards compatibility

Groups imported from VOMS

WLCG Token Schema
• In order to serve authorisation information a VO, the WLCG token schema

definies extra claims – wlcg.groups for Group-based authorisation and
scopes for Capability-based authorisation

• wlcg.groups semantics are equivalent to existing VOMS groups, and
will be initially imported directly from VOMS
• Eg: /atlas/production

• scopes is used to provide capability to a specific token, rather than
permanent authorisation to a user
• Format $AUTHZ:$PATH where $PATH is mandatory (may be ‘/’ for *)
• Eg: storage.read:/atlas

• For more details, you can see the published schema:
https://zenodo.org/record/3460258#.Y-YqUxPMLVs

https://zenodo.org/record/3460258

@STFC_matters Science and Technology Facilities CouncilScience and Technology Facilities Council

