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Towards a Formal Framework for Facilities Science

We examine an as far as the author knows previously unpublished
formalisation of facilities experiments proposed by Prof. Jared
Tanner (Oxford), et al.

Our aim is to examine and interpret its content, first in the context
of a very simple science model (we roll a die. . . ), and then later in
the wider context of machine learning for sciences in general, and
facilities in particular.

Slides will be made available.



ToC

I Introduction of the model of Jared Tanner et al

I A digression into the philosophy of science

I Finding more ML applications

I A note on model selection

I Conclusion – if we learnt something, what did we learn?

I Future directions – in the unlikely event we want to know more

I References



Introducing Tanner’s Model

X

We start with X which is the set of (physical) parameters that we
(intend to) measure in an experiment.

Simple example: rolling a die (once), p is the (true, physical)
probability of rolling a 6.

Here, X = [0, 1] because p ∈ X is a probability.

Another way of describing the die is to introduce the probability pi

of outcome i , i = 1 . . . 6. In this case,

X =
{

(pi ) ∈ R6
∣∣∣∑

i

pi = 1 ∧ ∀i : pi ≥ 0
}

A true die would have ∀i : pi = 1
6 , of course. We shall return to

these models later.



Introducing Tanner’s Model

X
E // Y

In an actual (classical) experiment, we might wish to test the
hypothesis H : p = 1

6 by rolling the die N times and check if (say)
the number of 6es is approximately N/6.

Introducing Y as the measurements of the experiments. Say E is
rolling the die 1000 times and observing yE ∈ Y sixes.

In this case, YE = {0, . . . , 1000}.



Introducing Tanner’s Model

X
E // YE

However, the actual measurement of E is actually a stochastic
variable Y E with (initially) unknown distribution. Or unknown
parameters of the distribution. We introduce YE as the set of

possible stochastic variables for experiment E . In our die example,

YE =
{

Y | Y ∼ Ber(1000, x), x ∈ X
}



Introducing Tanner’s Model
x � // Y E_

��
m

I For the (first) die example, x is the (unknown) probability of a
six in a single roll.

I The x value maps to a stochastic variable Y E ∼ Ber(N, x)

I The value of the stochastic variable is the value of the
measurement y ∈ Y which here is the count of sixes in E , i.e.
1000 rolls of the die.

I The value y lets us define a model m, in some to-be-defined
model-space M.

The measurement y (and some stats theory) lets us estimate

x̂ = y/N



Introducing Tanner’s Model

X
E // YE

��
M

The model helps us describe the Thing that we are examining.

The two models we’ve encountered so far are both summarised as:

I Each roll of the die is independent of any past roll

I There are precisely six outcomes, {1, . . . , 6}
I There is a constant probability p for getting a six.
I Each outcome i occurs with a constant probability pi

I Hence
∑6

i=1 pi = 1

We introduce a set M of models.



Introducing Tanner’s Model

X
E // YE

��
M

The model describes our knowledge of the die, independent of the
experiment which led to this knowledge.

The model can be:

I Validated against experimental data (more on this later)

I Parameterised based on results of experiments (next slide)

I Used to make predictions (more on this later)



Introducing Tanner’s Model

X
E // YE

��
M

Notice that, like Y E , the models are parameterised. So far, M

consists of m1 and m2:

I Model m1(p) says the die rolls are independent with sixes
appearing with constant probability p.

I Model m2((pi )) says the die rolls are independent with
outcome i appearing with constant probability pi .

Note also that y (the value of Y E ) lets us estimate the parameters
(it is a sufficient statistic), but is not sufficient to check
independence.

Note also that the models are by no means stochastic; only their
parameters depend on random processes.



Introducing Tanner’s Model

X
E // YE

?
��

M?

Notice that E and the assumption of independence really say

Y E =
N∑
j=1

D j

where D j are IIDRV and take the value 1 iff the die shows six, and
0 otherwise.

This means that (for a fixed experiment), the outcome y has a
PDF,

fY (y)
M
= P(Y = y) = P

(∣∣{j ∈ Y |D j = 1}
∣∣ = y

)



Introducing Tanner’s Model

X
E // YE

?
��

M?

In our case, YE = {1, . . . , 1000}, as a set. However, XXX
speaking, is the set of probability measures on Y . Geometrically, it
is a simplex in 1001 dimensions:{

x0, . . . , x1000
∣∣∑

i

xi = 1 ∧ ∀i : xi ≥ 0
}



Introducing Tanner’s Model

X
E //

  

YE

��
PM

Composing the two arrows give us a map from X directly to the
model

I which is what we implicitly used in the initial description of
the die,

I because otherwise it’s kind of hard to describe how the die
works.



Introducing Tanner’s Model

X
E //

  

YE

��

oo

PM

``

Notice also how the estimators give us an inverse from the
sufficient statistic(s) to X .

I Except they are not necessarily (exact) inverses

I And the map M → X reflects the usefulness of the chosen
model as a means of describing the Thing that we study.



Introducing Tanner’s Model

x
� E //

�

Dθ2 ##

y_

��

�
Rθ1

oo

m(x̂(y))

Introduce two mappings:

I Rθ1 : Y → X , θ1 ∈ Θ1

I Dθ2 : X → M, θ2 ∈ Θ2

I The “reconstruction” R estimates x from the experimental
outcome y .

I The “feature extraction and model builder” D formalises our
derivation of the model based on experimental data.

I Except it also includes the choice of model

I Loss function LX (θ1)
M
= EX ,Y(dX (Rθ1(y), x))

I Loss function LM(θ2, θ1)
M
= EX ,M(dM(Dθ2(x),m(Rθ1(y))))

I But think of minimising LM(θ2, θ1) over θ2 once the optimal θ1
is found. . . (discuss!)



Introducing Tanner’s Model

x
� E //

	

Dθ2 $$

y�
Rθ1

oo

m(Rθ1(y))

I (We’ll return to the loss function in a mo. . . )

I Instead of x̂ , use the more general Rθ1(y).
I For the dice, the default R are the estimators

I For m1, Rθ1(y) = y/N
I And Θ1 = {♠}

I And Dθ2(x) = mθ2 is the model selector, with Θ2 = {1, 2}
I How it picks which model is as yet unspecified.
I The model selection is not random except to the extent we let

y decide the model.
I (Compare AIC, BIC?)



Reconstruction

x
� E //

	

Dθ2 $$

y_

��

�
Rθ1

oo

m(Rθ1(y))

I Let’s look at Reconstruction Rθ1 : Y → X
I In SAXS/SANS, there is no direct “estimator” of parameters

I The parameter space is X
I Tanner et al.: Use machine learning to infer x ∈ X .
I Hyperparameters and coefficients are Θ1



Reconstruction (interlude)
H // E

E 7→YE

��
X

??

// Y // Y // {T ,F}
I Introduce a set of hypotheses, H, on X

I and the powerset H M
= {h|h ⊆ H}

I Each set of hypotheses h ⊆ H maps to an experiment E ∈ E
testing the validity of the combined truth, i.e., T

M
=
∧

h∈h h

and F
M
= ¬T

I Here, Y M
= {YE |E ∈ E}

I and Y
M
= ·
⋃

E∈E YE is the (disjoint) union of all the outcome
spaces;

The experiment, in case you’re wondering, is y = YE (ω) ∈ YE ,
where ω ∈ Ω and Ω is the Universe (if you weren’t, don’t worry
about it – Universes are a whole talk by itself.)

Finally, a test h(y) ∈ {T ,F} tests the hypotheses.



Reconstruction (interlude)

H // E

��
X

??

// Y // {T ,F}

I Digression – the Duhem Thesis [P. Duhem, 1906]
I Not all sciences are equal, so think of physics
I “An experiment tests multiple hypotheses”
I “Validation means all hypotheses (together) are true”
I “Can’t isolate an individual hypothesis when test is rejected”

I In practice...
I The challenge to Science: if a test fails, identify the

hypotheses that caused it to fail.
I Note that Y would depend on E , as before; the outcome of

experiment E is y ∈ YE .



The Hidden ML Application – Hypothesis Testing

I If a test fails, we should re-test with selected hypotheses
removed

I Remove as few as possible, then map to a new E which gives
us.

I Would be nice if we could use the same E ?!



Iacta Est Alea

I Example. Hypothesis is “the die is honest”
I Hidden hypotheses:

I Every die roll is independent of every other;
I The probabilities of outcome i is constant.
I In other words, model m2 is valid.

I Experiment: E : roll die 1000 times and count frequency of
each outcome.

I Under the hidden assumptions, YE is multinomial with
probabilities p = (p1, . . . , p6)

I The Hypothesis tests ∀i : pi = 1
6



Iacta Est Alea

I Die produces
6, 2, 6, 2, 6, 6, 1, 6, 6, 1, 2, 1, 4, 4, 1, 4, 4, 2, 3, 5, 1, 1, 6, 1, 5, 5, 6, 5, 6, 3,

I Die produces
6, 2, 5, 3, 4, 1, 6, 4, 5, 4, 1, 4, 6, 5, 4, 3, 5, 4, 6, 2, 1, 3, 5, 3, 6, 2, 2, 5, 5, 3,

I Die produces
1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6,

Clearly a die which wishes to cheat us can do so, with E as above.

To test for truly randomness, we need to examine the whole
sequence (e.g. [NIST-IR6483], 189 statistical tests!)

In principle, this could be a case for machine learning – failing to
detect patterns... (often, visualisation is used)



Whittling Hypotheses

I Example: 3-SAT (NP complete) [3SAT]
I Animal guessing game

I X = {fly,cat,snake, armadillo,. . . }
I h1: Does it have fur? h2: Does it have four legs?
I h1 ∧ h2 ⇒ is− cat
I Decision tree: pick most important information first.
I Adjust according to new information:

I h1 ∧ h2 ⇒ ¬is− dog (it can’t be both a cat and a dog)
I h3 : says−meow (what if the cat doesn’t say anything?)
I Which sort of takes us into the Quine Thesis. . .

I Whittling applies also to sensor data and biostuff
I combinatorial methods towards explainable AI [NIST-AI]
I Also found in software testing (combinatorial)



The first loss function revisited

LX (θ1)
M
= EX ,Y(dX (Rθ1(y), x))

I Assumption that X is now a probability space
I Which means σ-algebra with probability measure (otherwise

the expectation/integral would not exist)
I Natural fit would be a prior on X ?
I But maybe the σ-algebra needs some thought

I Assumption that X has a metric dX , so it’s a metric space
I Which means the σ-algebra has to contain the Borel sets
I (induced by the topology)

I Expectation is
∫

dX (Rθ1(y), x)fY E
(y)fX (x)dxdy

I Where the fX is the PDFs on X (the prior)
I and fY E

is the PDF of Y E : Ω→ YE )
I – a weighted avg of the distance between (any) x and the

predicted value of x from any experimental value y .
I Compare KL-divergence which measures information in one

probability distribution wrt another



Revisiting the Experiment

E : X → Y,E ∈ E

I No a priori structure on E
I No a priori structure on Y
I So what is E : X → Y?

I Measurable: a family of stochastic variables YE



A Posterior on X? and Multimodal Experiments

If X has a prior, what is its posterior?

I The probability distribution of Y E is unrelated to the prior on
X

I It arises from the probability distribution on Ω

f (x |y) = f (y |x)
f (x)

f (y)
∝ f (y |x)f (x)

In a multi-modal approach, the posterior for the first experiment
would become the prior for the second.

Classically, sufficient statistics are good for this. But the prior may
guide the choice of hypotheses h and experiment E .



A Quick Note on Model Selection
Model selection is not random. . .

I Standard methods select models by best fit with fewest
parameters

I Akaike Information Criterion (AIC)
I Bayes Information Criterion (BIC)

I In Tanner’s approach, the posterior is based on ML (and
hence the description of the sample in the model), so proposes
ML methods for “fitness” (e.g. Wasserstein “distance”)

A good fit of m1 would beat a good fit of m2 because m1 has 1
parameter and m2 has 5 (well, 6, but 5 d.o.f.)

It would seem a good fit of m2 includes a good fit of m1 as a
special case (in some handwavy way) and is a better description of
the die?

However, a good fit to m0 : ∀i : pi = 1
6 which has 0 d.o.f. is the

best description of the die anyway.

The proposal favours many-parameter models; overfitting is
avoided by other means. Sed hanc marginis non caperet...



Conclusion
I We’re examining a sample space with a prior
I Randomness comes from the Universe (when we make the

experiment)
I (Potential) machine learning applications:

I Parameter steering for SAXS/SANS modelling (Tanner)
I No “simple” estimator gives the parameters x ∈ X

I Model selection (Tanner): describing the prior in terms of the
model, towards a learning based model

I Hypothesis whittling: for h ∈ H construct experiment that
tests h, tests ¬h, or ignores h.

I From Hypothesis Whittling to explainable AI
I Inference of importance (from posterior) of hypotheses

I Hypotheses and explainable AI
I Testing all the data instead of the classical sample can test

more hypotheses – better coverage.
I Assuming of course that the tests work

I This talk has taken us from DLS to the philosophy of science
to machine learning to some open questions and possible
future directions. . .



Future Directions

Any, all, or none of these could be topics for a future talk:

I Information and Ω (the Universe) and entropy; KL divergence;
hypotheses testing and subhypotheses testing (refinement).

I Hypotheses and model selections. Comparing Classical with
Bayesian model selection.

I “Classical” loss functions (least squares, max likelihood) vs
machine learning loss functions.

I Randomness for science [XKCD] . . . (vs. randomness for
cryptography [NIST-IR6483])
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