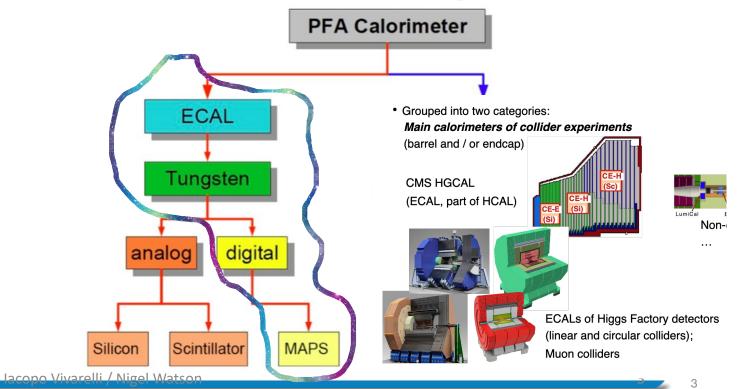
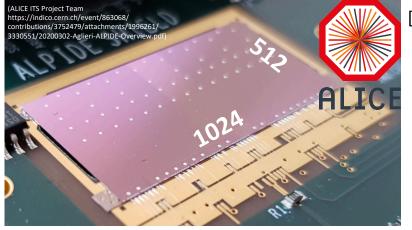

Calorimetry (former TF6 of Detector roadmap)

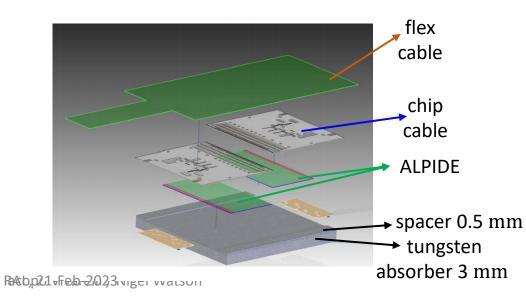
- <u>DRD kick-off meeting</u> took place on 12th January.
- Work split in 3 + 1 "tracks":
 - Track 1: Sandwich calorimeters with fully embedded electronics (connects with UK work on Calice, FOCAL/DECAL CMS upgrade?
 - Track 2: Liquified Noble Gas calorimeters (not immediately relevant for UK (?)).
 - Track 3: Optical calorimeters (connects with UK activities on dualreadout/fibre based R&D)
 - Track 4: Alternative or transversal proposals (no connection with UK?)
- Request for proposals sent from DRD coordinators with deadline 24th March.


Track 1 – Sandwich calorimeters

- UK involved in <u>CALICE R&D Collaboration</u> since 2001, ~280 physicists/engineers
- International project, develop **complete** PF calorimeter **system**, initial e^+e^- focus
- Reviewed regularly, e.g. by ECFA detector R&D panel
 - <u>https://twiki.cern.ch/twiki/pub/CALICE/WebHome/CALICEReport2018_final.pdf</u>
- Scope indicator:
 - 10 x Snowmass 2021Lol
- Original UK interests
 - DAQ/readout
 - Simulation
 - PFA algorithms (Pandora)
 - MAPS ECAL

Track 1 – Sandwich calorimeters


- UK involved in CALICE R&D Collaboration since 2001, ~280 physicists/engineers
- International project, develop **complete** PF calorimeter **system**, initial e^+e^- focus
- Reviewed regularly, e.g. by ECFA detector R&D panel
 - <u>https://twiki.cern.ch/twiki/pub/CALICE/WebHome/CALICEReport2018_final.pdf</u>
- Scope indicator:
 - <u>10 x Snowmass 2021Lol</u>
- Current UK interests
 - DAQ/readout
 - Simulation
 - PFA algorithms (Pandora)
 - MAPS ECAL (calo and sensor)


Electromagnetic Pixel Calorimeter 2 (EPICAL-2)

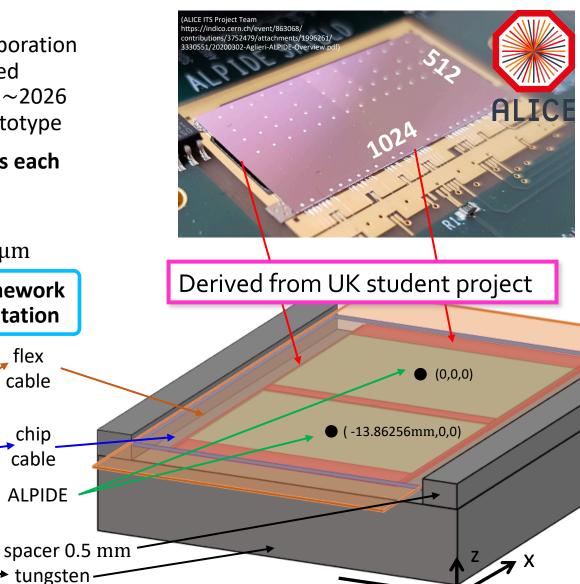

• second prototype:

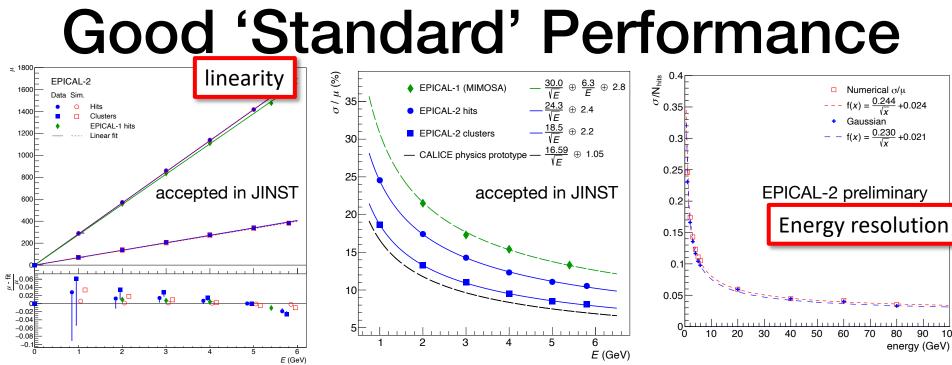
- \rightarrow related to Bergen pCT Collaboration
- → in context of R&D for planned LHC-ALICE FoCal upgrade in ~2026
- \rightarrow fully digital calorimeter prototype
- 24 layers with two ALPIDE chips each
 → chip size: 30 mm x 15 mm
- 512 x 1024 pixels per chip \rightarrow pixel size: 26.88 µm x 29.24 µm

[T Rogoschinski]

Electromagnetic **Pi**xel **Cal**orimeter 2 (EPICAL-2)

flex


cable


chip cable

ALPIDE

absorber 3 mm Nigel Watson

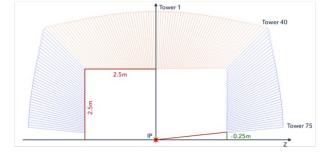
- second prototype:
 - \rightarrow related to Bergen pCT Collaboration
 - \rightarrow in context of R&D for planned LHC-ALICE FoCal upgrade in ~2026
 - → fully digital calorimeter prototype
- 24 layers with two ALPIDE chips each \rightarrow chip size: 30 mm x 15 mm
- 512 x 1024 pixels per chip \rightarrow pixel size: 26.88 µm x 29.24 µm
- **simulation** utilizing **Allpix² framework** \rightarrow precise geometry implementation

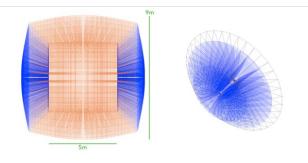
- Calorimetric response evaluated in test beams
 - · 'Conventional' observables first: total number of hits or clusters
- Low energy (DESY)
 - Good linearity
 - 'Particle counting' (*N*_{clus}) shows competitive resolution at low energy

See JINST 18 (2023) 01, P01038

- Resolution for N_{hits} consistent with low energy
- Usage of *N*_{clus} observable under study

5

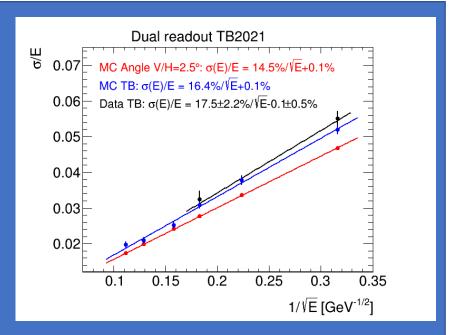

Future Opportunities for UK - SiW

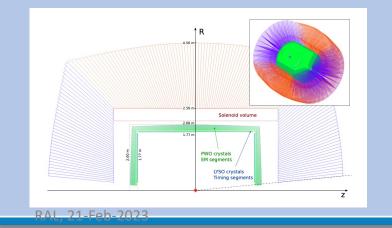

- Si-W calorimetry can give excellent PFA performance
 - Potential to use same technology for outer tracker/preshower/ECAL
- Affordable Si-W (Si-Pb) calorimeters, need sensor costs ~ CHF/cm² (active areas > 10⁷cm²)
 - Potentially achievable with CMOS technologies, expanding market
- Power needs study, CMOS estimates range ~50-100mW/cm² (no pulsing)
- Prototype demonstrating concept of digital ECAL, in same CMOS line as CERN et al, can deliver radiation hardness to > 10¹⁵neq/cm²
- Digital EM calorimetry, high potential esp. for future e^+e^-
 - Ultra-high granularity can benefit physics as well as cost (boosted decays)
 - Fast charge collection
 - Currently, UK (Birmingham) working with ALICE FoCAL/pCT groups on EpiCAL-2
 - Perfect time to expand/lead novel concept for future projects

Track 3 – Optical calorimeters

- University of Sussex part of an **international proto-collaboration** including institutions from Korea, US, Italy for R&D on dual-readout for e⁺e⁻colliders.
- R&D fully integrated in ECFA process since the beginning (R. Ferrari (Pavia and INFN) is one of the conveners of the DRD).
 - DRD presentation about dual-readout
 - Test beams performed in 2021 and 2022 (EM-size prototypes). One more planned for 2023 (towards had-size prototype).
 - A few recent publications: <u>arXiv:2203.04312</u>, <u>Instruments 2022 6(4)</u>, <u>59</u>, <u>arXiv:2202.01474</u>.
- Total funding for activities ~ 4M currency units to INFN/Korea/US for construction of hadronic-size fibre-based prototype + Crystal based dual readout.
- Challenges:
 - Tens of millions of SiPM readout to be read. Digital SiPM?
 - Increase Cherenkov light collection efficiency. Blue/near UV fiber + SiPM?
 - Timing to resolve energy deposits at different points in the fiber.
 - Develop a calibration system.

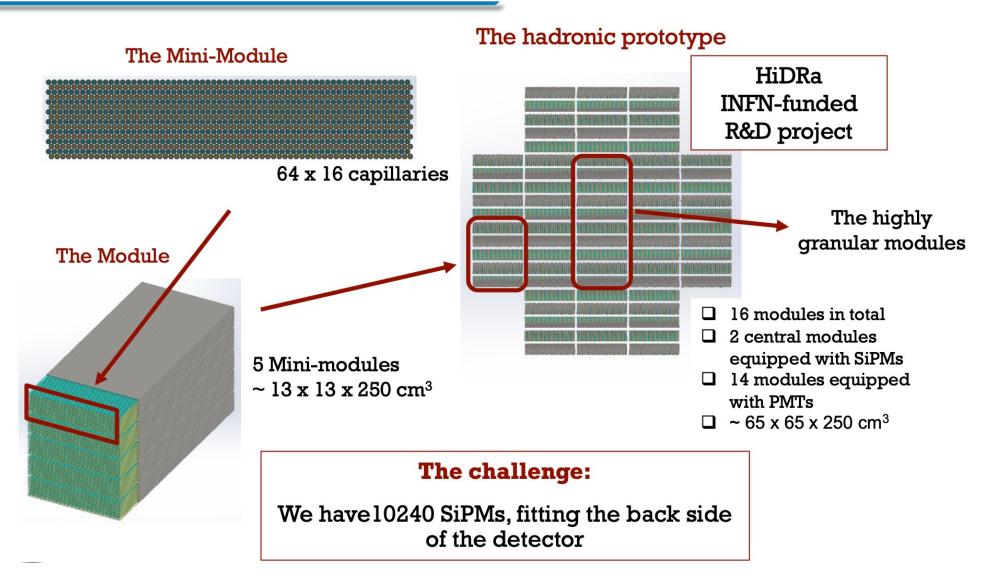
RAL, 21-Feb-2023





2021 test beam: EM performance test of capillary tube mechanical structure

- Tested with beam at DESY and CERN
- Characterised in terms of linearity, resolution, granularity



Taken from https://doi.org/10.1088/1748-0221/17/06/P06008

- Option with a crystal-based, dual-readout EM section
- Superior EM and Had resolution
- Suitable for particle flow applications

Immediate future – hadronic size prototype

UK contribution to track 3

- University of Sussex funded via AIDAInnova, capital equipment and CG.
- Current: simulation, performance, test beam analysis, monitoring ands DAQ, optical fibre characterisation, SiPM timing performance measurement.
- Mid-term feasible contributions:
 - Fibre characterisation for Had-size prototype, monitoring and DAQ.
 - Fibre+SiPM calibration system for calorimeter.
 - Trasverse to multiple DRDs: **Digital SiPM** (connection with, e.g., noble liquid caloriemeters, tracking (SciFi) LiquidO, etc.)
- Connections that could be explored: crystal work in the US.

Connections with smaller – mid-term projects

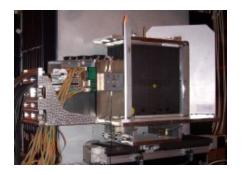
- Intersecting with DRD activities: small(er) size physics projects may need calorimeters on the short term:
 - E.g. Forward Physics Facility some experiments see large UK involvement
 - For example: FASER2 will need a 1x3x3 m³ high-granularity calorimeter on the timescale of a few years.
 - Potential to be able to address "system" issues on a system of a feasible size. Should be integral part of the R&D programme.

Outlook

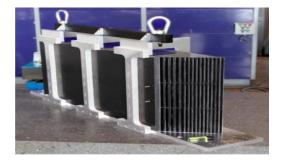
- Two tracks of DRD Calo have UK participation
- Scope for potential coordinated UK effort in Calorimetry DRD
- Initial Zoom meeting, 6th of March, 15.00, Meeting ID: 925 9141 1782
- All very welcome

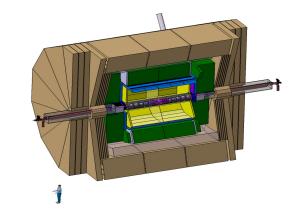
14

Historical context


Steps of R&D

Technological Prototype


2010 - ...


Physics Prototype 2003 - 2012

- Proof of principle of granular calorimeters
- Large scale combined beam tests

- Engineering challenges
- Higher granularity
- Lower noise
 - Today

LC detector

- The goal
 - Typically 10⁸ calorimeter cells
- Compare:
 - ATLAS LAr ~10⁵ cells
 - CMS HGCAL ~10⁷ cells

Roman Pöschl

ILD Meeting May 2022

14