

DRD2: Liquid Detectors

Jocelyn Monroe Roxanne Guenette (ECFA TF2 Conveners)

The Science covered

Neutrinos

- Oscillation precision measurements (δ_{CP}, mass ordering, θ₂₃ octant, sterile vs)
- Neutrino interactions
 (from CEvNS to DIS)
- Astro neutrinos

μBooNE

Dark Matter

• Direct detection (WIMPs, ...)

 Search for Majorana neutrinos

The Physics Needs (high level overview)

Neutrinos

 Push Energy thresholds down to
 ~1MeV to enhance
 oscillation physics,
 supernovae vs study,
 to enable solar vs ...

· Unambiguous readout

Scalability

Dark Matter

 Push Energy thresholds down to 1 meV/10 eV/1 keV to enable low mass DM/1 GeV DM/ WIMPs.

Reduce background rates

Scalability

<u>Ονββ</u>

 Improve Energy Resolution to sub-% FWHM

Reduce
 background rates

Scalability

R&D Roadmap for TF2

			PIP_II_	JP TENEDUM	Neutric Vermodul	Neurino near a al des	Light cless	Multick matter (Km3)	ion scale content	Cale ON OF US	PID-III Scintillation -100	JParca VENE DUN	Neutrin NE modul defectors	Neutrin Care Care	Light Cleres ectors	Hundred Matter of the second	On Scale On Scale Da	DW-E Scinting	JD JL BNF Peur.	No. Mr. UNE MO defect	Vertino neze volue vors	Lic, tele	Wit dant m cscopes fr	Undred ton letter (Inulti, Km3)	Lon Scale Du	UN-E Scintill_ Onbb defectors	& Ban ator Peutri.	VVB) defectors defectors
		DRDT				202	2-202	5						2025-2	2030						1	203	0-203	5		1		
Readout develop- ment	Higher energy resolution	2.1)	
	Lower energy threshold	2.1													•	İ))	
	Expand wavelength sensitivity	2.1		•		•	•	•		•		•		•	•													
Measure-	Fine granularity	2.2	•	•											•))	
ment strategy	dE/dx (combine modalities: charge, light, heat, acoustics)	2.2		•		•				•		•))	
Target properties	Liquid doping and purification (87 - 290K)	2.3)	
	High pressure	2.3												•	•	• •)			
Scaling up challenges	Detector services (e.g. cryogenics) and integration	2.4											•)	
	Large arrays (sensors)	2.4)	
	Low power	2.4				•				•))	
	Detector components radiopurity and background mitigation	2.4										•	•)	

DRD2: Liquid Detectors Activities

ECFA R&D Roadmap: https://indico.cern.ch/e/ECFADetectorRDRoadmap

Apr.'21: TF2 Symposium <u>https://indico.cern.ch/event/999815/</u> 197+5 registered to list (used for subsequent mail distribution)

...Roadmap drafting...

Sept.-Dec.'22: Community input questionnaire, to (i) develop the work packages of the Liquid Detectors RD Collaboration Proposal, and (ii) invite participation in proposal-drafting team

- announced on all previous email lists, advertised at LIDINE (Sept.'22) and DUNE Module of Opportunity workshops (Nov.'22) and via ECFA: <u>https://indico.cern.ch/event/957057/page/</u> <u>21912-questionnaires</u>
- 49 responses, of whom14 willing to serve on proposal-drafting team

Dec.'22: mini-workshop of proposal-drafting team to develop collaboration proto-structure based on community inputs

Jan.'23: meeting of proposal-drafting team to define proposal structure, following ECFA Steering Group guidance

Feb-Mar.'23: ...proposal drafting...

Apr.'23: plan 2nd community workshop

Community Survey Outcomes

What physics areas does your R&D address? 49 responses

Is your R&D activity 49 responses

Community Survey Outcomes: DRDTs

Under which Detector R&D Theme(s) would your R&D activities fall? Please refer to the Roadma document for more details on the definition of DRTDs (link).

49 responses

Readout Development: High... Readout Development: Low... Readout Development: Exp... Readout Development: Impr... Measurement Strategy: Fine... Measurement Strategy: dE/d... Target Properties: Liquid Do... Target Properties: Liquid Do... Scaling Up Challenges: Det... Scaling Up Challenges: Larg... Scaling Up Challenges: Low... Scaling Up Challenges: Nois... Charge transport in noble liq... Reconstruction methods

Target Properties: Microscop... My R&D falls into the catego...

Community Survey Outcomes: Type of activity

How long do you expect this particular R&D activity to last for? ⁴⁹ responses

Is your R&D a collaborative effort? 49 responses

Community Survey Outcomes: Budgets

49 responses

Community Survey Outcomes: Matching?

Similarly to the AIDAinnova programme, could there be matching resources from your institute? If yes, what would this be?

49 responses

Current state of the collaboration structure

• Proposal structure with technical area writing leads

WP 1: Charge Readout	WP 2: Light Readout	WP 3: Target Properties	WP4: Scaling-up challenges
1.1: Pixels J.Asaadi (US) R. Guenette (UK)	2.1: Increased sensor QE J. Monroe (UK)	3.2: Doping & isotope loading A. Zeni (Italy) H. Steiger (Germany)	4.2: Radiopurity & bkg mitigation Roberto Santoreli (Spain) Potential UK leader
1.2: Amplification A. Diesting (Germany)	2.2: Higher efficiency WLS/collection M. Kuzniak (Po) J. Martin-Albo (Spain) C. Cuesta (Spain)	3.1: Purification W. Bonivento (Italy) A. Goretti (Italy)	4.1: Material properties No representation Potential UK leader
1.3: Ion detection No representation	2.3: Electronics, readout, integration for cryogenics No representation -> in WP 4.4	3.3: Optimization of light emission & transport <i>M.Wurm (Germany)</i> S. Schoppman (Germany) Potentially UK leader	4.3: Detector & target procurement/production W. Bonivento (Italy) M. Yeh(US)
1.4: Dual (charge + light) E. Gramellini (UK) J. Asaadi (US)	2.4: Improved sensors for LS/Water M. Bongrand (France) T. Lachenmaier(Germany)	3.4: Microphysics & characterization <i>M.C. Piro (Canada)</i>	4.4 Large-area (light) readout I. Gil-Botella (spain) J. Crespo (Spain) G. Fiorillo (Italy)
1.5: Charge to light K. Mavrokoridis (UK)			

Current state of the collaboration structure

• Proposal structure with technical area writing leads

WP 1: Charge Readout	WP 2: Light Readout	WP 3: Target Properties	WP4: Scaling-up challenges
1.1: Pixels J.Asaadi (US) R. Guenette (UK)	2.1: Increased sensor QE J. Monroe (UK)	3.2: Doping & isotope loading A. Zeni (Italy) H. Steiger (Germany)	4.2: Radiopurity & bkg mitigation Roberto Santoreli (Spain) Potential UK leader
1.2: Amplification A. Diesting (Germany)	2.2: Higher efficiency WLS/collection M. Kuzniak (Po) J. Martin-Albo (Spain) C. Cuesta (Spain)	3.1: Purification W. Bonivento (Italy) A. Goretti (Italy)	4.1: Material properties No representation Potential UK leader
1.3: Ion detection No representation	2.3: Electronics, readout, integration for cryogenics No representation -> in WP 4.4	3.3: Optimization of light emission & transport <i>M.Wurm (Germany)</i> S. Schoppman (Germany) Potentially UK leader	4.3: Detector & target procurement/production W. Bonivento (Italy) M. Yeh(US)
1.4: Dual (charge + light) E. Gramellini (UK) J. Asaadi (US)	2.4: Improved sensors for LS/Water M. Bongrand (France) T. Lachenmaier(Germany)	3.4: Microphysics & characterization <i>M.C. Piro (Canada)</i>	4.4 Large-area (light) readout I. Gil-Botella (spain) J. Crespo (Spain) G. Fiorillo (Italy)
1.5: Charge to light K. Mavrokoridis (UK)			

Lots of UK involvement. More welcome!

UK Potential TF2 R&D Infrastructure: SOLAIRE

- Preliminary Infrastructure bid, selected by PPAP/PAAP in 2022 process, to build globally-unique underground liquid detectors R&D cryostat - a la 1/4 ProtoDUNE, in Boulby (leads: Price (DarkSide-LowMass), Soldner-Rembold (SoLAR), Monroe (DarkSide-20k))
- Presented at Feb,'22 Boulby Development workshop (slides from D. Price)

The SOLAIRE international project @ Boulby

SOLAIRE: proposed UK-led LAr TPC experimental facility leveraging future instrumentation R&D to probe dark matter & neutrino interactions with world-leading prospects for discovery in late 2020's

☆1 t (fiducial) dual-phase Ar inner TPC (SiPM instrumented) with 15 t outer TPC (charge-pixel readout) Based on DarkSide-LowMass [arXiv:2209.01177] and SoLAr [arXiv:2203.07501] design proposals.

☆**First phase** (AAr): domestic platform for novel instrumentation development and testing

Leverage world-leading UK silicon detector integration capability for lower-background readout, skills and capability in SiPM readout (DarkSide-20k) and pixelated charge-and-photon sensors (DUNE).

- → Enable UK leadership in low-background readout for the DUNE low background module.
- → Serves as a pathfinder for ARGO technologies with UK spearheading development.
- → Demonstrate capability for Boulby to host a next-generation global experiments at multi-ton scale.

☆Second phase (UAr): operation of optimised detector for main science runs, studies with doped LAr

- 16+ UK institutions already on board (Birmingham, Boulby, Daresbury, Edinburgh, Imperial, Lancaster, Liverpool, Manchester, Open University, Oxford, QMUL, RAL, RHUL, Sussex, UCL, Warwick...), with international collaborators in USA, Italy, Poland...
- Supported by PPAP and PAAP.
 - De lle service de CADAGE en este d'alle est faite de faitle d

202

SOLAIRE Infrastructure

 Underpins UK as an R&D centre at-scale for low-radioactivity, low noise, high quantum efficiency cryogenic sensors for the future of science and industry

Ambitions and milestones: funding needs

☆SOLAIRE Year 1—2 Need some near-immediate PDRA/Engineering time to begin ☆Site study; background assessment; preliminary engineering designs; preliminary simulations.

 \Im Site study; background assessment; preliminary engineering designs; preliminary simulation \Im Development of international partnerships + UK industrial partners.

☆SOLAIRE Year 2—5

Estimate total cost £9M (incl. key personnel)

☆Design, production and assembly of a LAr cryostat with inner/outer volume.
 ☆Development and demonstration of prototype readouts (SiPM and pixelated charge readout).
 ☆Installation of a small-scale ultra-low background TPC prototype to study backgrounds.

\Rightarrow First physics runs.

 \thickapprox Delivery of engineering design for final SOLAIRE experiment.

rightarrowLate 2020's: position to bid host the next scale argon dark matter detector?

☆SOLAIRE Year 6—10

Estimate total cost (re-using infrastructure) £21M

 \therefore Delivery of optimised SOLAIRE experiment with readout / doping strategy informed by previous phase. \Rightarrow Main science runs. 15