Contribution ID: 16

Type: Invited talk

First spectroscopy of ⁶²Ti: Shell evolution towards ⁶⁰Ca

Tuesday, 1 August 2023 14:05 (25 minutes)

Shell evolution for the N=40 isotones has recently attracted considerable attention. In a single-particle shell model N=40, which corresponds to the filling of the fp neutron shells, is predicted to be a sub-shell closure. However, measurements of the first 2⁺ states in ⁶⁴Cr and ⁶⁶Fe give evidence of a rapid weakening of the N=40 gap when removing protons from the $f_{7/2}$ shell. Conversely, the 2⁺ energies of ^{58,60}Ti show only a slight decrease towards N = 40. To further understand the shell evolution towards the supposedly doubly-magic ⁶⁰Ca, we report on the measurement of the first excited 2⁺ state of ⁶²Ti.

Excited states in ⁶²Ti were populated via the ⁶³V(p,p2)⁶²Ti reaction and studied using γ -ray spectroscopy. The energies of the $2^+ \rightarrow 0^+$ and $4^+ \rightarrow 2^+$ transitions, observed here for the first time, indicate a deformed ⁶²Ti ground state. These energies are increased compared to the neighboring Cr and Fe isotones, suggesting a small decrease of quadrupole collectivity. This result is well reproduced by large-scale shell-model calculations based on effective interactions, while ab initio and beyond mean-field calculations do not yet reproduce them. The shell-model calculations for ⁶²Ti show a dominant configuration with four neutrons excited across the N=40 gap. Likewise, they indicate that the island of inversion extends down to Z=20, disfavoring a possible doubly magic character of ⁶⁰Ca.

Primary author: CORTES, Martha Liliana (RIKEN)

Presenter: CORTES, Martha Liliana (RIKEN)

Session Classification: Island of inversion at N=40