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Quantum Key Distribution (QKD)

Eve

Challenge: our existing technigues for sharing a secret key, based

on public key cryptography, can be broken by quantum computers.
How shall we distribute a key securely in the guantum era?

Solution: Instead of computational complexity, let us rely on the
laws of physics as we understand them by Quantum Mechanics!
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Quantum Key Distribution (QKD)

Eve

Challenge: our existing technigues for sharing a secret key, based

on public key cryptography, can be broken by quantum computers.
How shall we distribute a key securely in the guantum era?

Solution: Instead of computational complexity, let us rely on the
laws of physics as we understand them by Quantum Mechanics!

Key Feature: Any eavesdropping attempt can be detected
and its impact quantified.
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QKD: Security Assumptions

* QKD security proofs are based on the assumption that

Eve has full access to the channel

1- She can collect Alice’s signal in full and send whatever she
wants to Bob

2- Alice and Bob make no assumption on the channel; they just
rely on their measurement results to bound the leaked information

to Eve

Unrestricted Eavesdropping
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How far you can go without a repeater?

Fundamental limits of repeaterless <D
quantum communications QKD as a
benchmarking
Stefano Pirandola & Riccardo Laurenza, Carlo Ottaviani & Leonardo Banchi
tool

Nature Communications 8, Article number: 15043 (2017) | Cite this article

4796 Accesses | 271 Citations | 53 Altmetric | Metrics
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Satellite-based QKD

First QKD satellite, Micius, in orbit!
3 breakthrough experiments:

Teleportation

QKD between satellite and ground station

QKD between two cities 7600 km apart

| [Nature 549, 70 (2017)]
[Nature 549, 43 (2017)]
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[PRL 120, 030501 (2018)]
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Satellite-based QKD: Challenges

* First QKD satellite, Micius, in orbit!
» 3 breakthrough experiments:

QKD between satellite and ground station
Teleportation
QKD between two cities 7600 km apart

* Not without limitations

Right now, definitely expensive

For LEO satellites, you have about 5 minutes to exchange keys -
you need a constellation - even more ambitious

Day light could kill you; so far only night operation
Weather dependent

Not everyone has a large telescope; but such ground stations can be
part of the trusted node network

The satellite would remain a trusted node in most practical cases

- Can we do anything to better capitalize on the

investment will make in the space? I
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QKD: Strict vs Restricted Security Assumptions

 Strict assumptions in QKD (generous for Eve!)
— Eve has full access to the channel:

1- She can collect Alice’s signal in full and send whatever she wants to
Bob

2- Alice and Bob make no assumption on the channel; they just rely on
their measurement results to bound the leaked information to Eve

But, can we relax some of
these assumptions for line-
of-sight satellite links?
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QKD over a Wiretap Channel

Entropy 2019, 21, 357 gatellite Quantum Communications When

Man-in-the-Middle Attacks Are Excluded
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QKD: Strict vs Restricted Security Assumptions
 Strict assumptions in QKD

— Eve has full access to the channel:
1- She can collect Alice’s signal in full and send whatever she wants to
Bob

2- Alice and Bob make no assumption on the channel; they just rely on
their measurement results to bound the leaked information to Eve

But, can we relax some of
these assumptions for line-
of-sight satellite links?

* What if we have a monitoring
system that could alert us to

eavesdropping objects?
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Satellite QKD with Restricted Eve

Monitoring assumptions: With detection systems, such as Lidar or
certain imaging systems, Alice and Bob can possibly rule out the
presence of eavesdropping objects of a certain size within a distance

This could limit the size of Eve’s collection antennas and/or her resend
capability for active eavesdropping

* Unrestricted Eavesdropping

Satellite
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Eve’s Detection by LIDAR
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Eve’s Detection by LIDAR

Satellite+LIDAR
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Satellite QKD w/ restricted Eve

* Unrestricted Eavesdropping

______
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But, what happens to the signal that does not
reach Eve? Can it still find its way to get to Bob?
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Satellite QKD w/ restricted Eve: Bypass Channel

* Restricted Eavesdropping: Scenario (a)

_, Bypass channel
inaccessible to Eve

Alice Eve
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In general, some signals that reach Bob may
bypass Eve; such a bypass channel is
inaccessible to Eve, but A&B cannot fully

characterise it either.
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Satellite QKD w/ restricted Eve: Different scenarios

* Restricted Eavesdropping: Scenario (a)

_, DBypasschannel _________.
inaccessible to Eve
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In general, some signals that reach Bob may
bypass Eve; such a bypass channel is d
inaccessible to Eve, but A&B cannot fully £ o Ty
characterise it either. ‘ o

* Restricted Eavesdropping: Scenario (b)
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Everything that reaches Bob would go through Eve; this
IS a special case of (a), with bypass channel output

. ]
being a vacuum state.
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QKD with an uncharacterised bypass channel

(a) Restricted Eavesdropping with bypass (b) Restricted Eavesdropping without bypass

.y Bypass channel
| inaccessible to Eve
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arXiv:2212.04807

Key Result: For the same observable data points,

Theorem1:  Secret key rate of (a) < Secret key rate of (b)

Key argument: the space over which Alice and Bob have
to minimise the key rate in (b) is a subset of that of (a)
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Implications of Thm 1 on CV QKD

lan
Gaus(j_a F\l N Homodyne
encoding > ™ Bob detection
Alice Fo T E’ : /

O A—— B o' B,

:X“ MA|— [Wap)f > > —( M; |,

__________ n AETIO) Ne f I‘E"l:_?T_____a’l

|Yee = E

« We work out the key rate for a Gaussian encoded CV QKD
system with homodyne detection for a special lossy bypass
channel under an entangling cloner attack

* Telescope action is modelled by a beam splitter

* We minimise the key rate over a feasible set of parameters
(i.e. when valid values can be assigned to all parameters on
the graph)
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Implications of Thm 1 on CV QKD

Upper bound from Thm 1

102+ Measured data
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For reverse reconciliation: the lower bound on the key rate is

numerically very close to the upper bound from Thm 1, and is
achieved when bypass channel is loss and noise free.

For direct reconciliation: advantage only at very low n g @
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Implications of Thm 1 on BB84 with WCP

n 7
Alice photons

I
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| WCP |— ve > Mg >y,

_______

__________

- Simplest BB84 protocol is the one that uses weak coherent pulses
(WPC) at a fixed intensity (no decoy, or single-photon sources)

- For phase-randomised sources, this implies a photon-number

channel. Secure key bits are those obtained when Alice sends
exactly one photon.

Bypass | _ _ _ _ _ _ _ _ _

) rt\ n channel I,’ Bob e
: photons !
Alice photons : :
§_ I I

I

: I

% Eve I
e [
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« When there is a bypass channel, it is also possible that we get a

detection at Bob while no photon has gone through Eve. J@L
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Implications of Thm 1 on BB84 with WCP
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* Phase randomised WCP offers advantage over SPS only at
very low nag

« We can capitalise on cases where no photon has gone
through Eve

« Some ideas to obtain tighter bounds: in progress 8
N
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Summary: Realistic Threat Models for Satellite QKD

- ___| Bypass channel [ ___|
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«  We considered prepare-and-measure QKD under some nominal
restrictions on Eve in terms of accessing Alice’s signal or reaching
Bob’s telescope; this could be relevant to satellite-based QKD

* This resulted in a new QKD setting with an uncharacterised bypass
channel inaccessible to Eve

*  We found a generic upper bound for P&M QKD with a bypass
channel, which is easy to calculate

« Under certain realistic assumptions on the bypass channel, we
found that the numerically obtained lower bound for CV QKD is

very close to the above upper bound if we use reverse
reconciliation

* For DV-QKD, WCP sources can offer advantage if n,z << 1. I
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Implications of Thm 1 on CV QKD
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Implications of Thm 1 on CV QKD
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QKD with an uncharacterised bypass channel

Theorem 1:

arXiv:2212.04807
Key Result: For the same observable data points,
Secret key rate of (a) < Secret key rate of (b)
Key argument: the space over which Alice and Bob have to

minimise the key rate in (b) is a subset of that of (a)
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Implications of Thm 1 on BB84 with WCP

Bypass | = _ _ _ _ _ _ _ _ _

n channel ,’) Bob \\
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- Simplest BB84 protocol is the one that uses weak coherent pulses
(WPC) at a fixed intensity (no decoy, or single-photon sources)

« For phase-randomised sources, this implies a photon-number
channel. Upon Bob’s detection, the amount of information leaked

to Eve can be bounded by:
rO m=0,n2>0
1 m>1,n>m

hie11) m=1,n=1

1 m=1n>1
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