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Outline

 What are cosmic explosions and why we study them??
* How we detect them,

 How we classify them,

 What people have done on this classification problem,
 What | have done for this classification problem.
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Type la Supernovae

Thermonuclear explosions of
dwartf stars made of Carbon
and Oxygen

Critical Mass = 1.4 Msun

Standard evolution and
brightness!




Type la Supernovae

Thermonuclear explosions of
dwartf stars made of Carbon
and Oxygen

Critical Mass = 1.4 Msun

Standard evolution and
brightness!

- Standard
“candles”

Excellent objects to
measure distances!
(< 5% accuracy)



Type la Supernovae
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Type la Supernovae

The expansion of the Universe is ACCELERATING !!
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Type la Supernovae
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Surveys

Dark Energy Survey Large Synoptic Survey
(DES) Telescope (LSST)

2013-2018 2020-2030



Surveys

Dark Energy Survey Large Synoptic Survey
(DES) Telescope (LSST)
2013-2018 2020-2030

-> 27 deg? of the sky
-> 4 filters

>0.1 TB of data per night

30.000 transients in 5 years



Surveys

Dark Energy Survey Large Synoptic Survey
(DES) Telescope (LSST)
2013-2018 2020-2030
-> 27 deg? of the sky - 1500 deg? of the sky
-> 4 filters -> 6 filters

>0.1 TB of data per night 20 TB of data to process per night
106 transients alerts per night
30.000 transients in 5 years Billions of transients in 10 years



How this works in practice
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How this works in practice
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How this works in practice
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How this works in practice

|| Supernova ||
/ (10%)
L Z 1 N
)298% accuracy requirec{A
v
Supernova Supernova New exotic
Type la Core Collapse SN?

Campbell et al. 2014, Sako et al. 2014, Lochner et al. 2016

7



Luminosity

Imaging —> Spectroscopy
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Imaging —> Spectroscopy

Spectrograph
Spectrum
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Problems: Color

* Only 10% of the sample can be scanned with spectrograph
* Training sample: bias towards brighter objects (i.e. SNe |a)
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Challenges to the community of astronomers
and data scientists

SN Photometric Classification Challenge,
SNPhotCC (2010)

Photometric Classification Challenge for LSST,
PLAsTICC (2018)




SN Photometric Classification Challenge,
SNPhotCC (2010)
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Kessler et al. 2009, 2010




SN Photometric Classification Challenge,
SNPhotCC (2010)

Simulations using 3 Classes (SN la, 2 types of CC SN)
Training sample: 1,103 Supernovae
Test sample: 20,216 Supernovae



SN Photometric Classification Challenge,
SNPhotCC (2010)

Simulations using 3 Classes (SN la, 2 types of CC SN)
Training sample: 1,103 Supernovae
Test sample: 20,216 Supernovae

PSNID SNmachine
Template fitting, Feature engineering +
no ML involved ML algorithms

(RF, NB, SVM, BDT,
ANN)

Sako et al. 2008,
Sako et al. 2014 Lochner et al. 2016



SNmachine (Lochner et al. 2016)
Method (1) Method (2)



True positive rate

SNmachine (Lochner et al.2016)

Method (1)

-> 5 features: width, amplitude, color
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SNmachine (Lochner et al.2016)

Method (1)

-> 5 features: width, amplitude, color
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SNmachine (Lochner et al.2016)

Method (1) Method (2)
-> 5 features: width, amplitude, color = 21 features: Gaussian Processes
(B vs V), rise time, galaxy recession +Wavelet decomposition, galaxy

velocity recession velocity
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AUC < 0.85 if original training sample
since this is not representative of the test
sample.



SN Photometric Classification Challenge,
SNPhotCC (2010)

Simulations using 3 Classes (SN la, 2 types of CC SN)
Training sample: 1,103 Supernovae
Test sample: 20,216 Supernovae

PSNID

Template fitting,
no ML involved

Sako et al. 2008,

Sako et al. 2014

SNmachine

Feature engineering +
ML algorithms
(RF, NB, SVM, BDT,
ANN)

Lochner et al.2016

RNN

No feature extraction,
raw data and
Recurrent NN

Charnock&Moss 2017
Moller et al. 2019
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SuperN Nova

*s &, open source photometric

Recurrent Neural Networks

(Moller et al. 2019)

Simulations: 1,983,213 Supernovae
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SuperN Nova

: .2 i+ open source photometric
classification

Recurrent Neural Networks

(Moller et al. 2019)

Simulations: 1,983,213 Supernovae
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SN Photometric Classification Challenge,
SNPhotCC (2010)

Simulations using 3 Classes (SN la, 2 types of CC SN)
Training sample: 1,103 Supernovae
Test sample: 20,216 Supernovae

PSNID

Template fitting,
no ML involved

Sako et al. 2008,

Sako et al. 2014

SNmachine

Feature engineering +
ML algorithms
(RF, NB, SVM, BDT,
ANN)

Lochner et al.2016

RNN

No feature extraction,
raw data and
Recurrent NN

Charnock&Moss 2017
Moller et al. 2019



Photometric Classification Challenge for LSST,

PLAsTICC (2018)
Real Detection
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https://plasticc.org

Photometric Classification Challenge for LSST,
PLAsTICC (2018)

Simulations using 15 classes (6 types of SNe), 14 represented in
training sample.

Training: 8000 objects (NON-representative)

Testing: 3.5 million objects

w'!"':l Featured Prediction Competition

PLAsTICC Astronomical Classification $25,000

Prize Money

Two challenges:
Early classification
Late classification

Can you help make sense of the Universe?
‘é’ LSST Project - 1,094 teams - 4 months ago

v Data Kernels Discussion Leaderboard Rules

Pe rfo rm an Ce U Help some of the world's leading astronomers
. Evaluation grasp the deepest properties of the universe,
metrics: log-loss

Prizes The human eye has been the arbiter for the
classification of astronomical sources in the
Timeline night sky for hundreds of years. But a new
I facility -- the Large Synoptic Survey Telescope
PLAsTICC's Team . ’
(LSST) == is about to revolutionize the field,
discovering 10 to 100 times more astronomical
sources that vary in the night sky than we've

ever known. Some of these sources will be

completely unprecedented!

The Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTICC) asks Kagglers to
M alZ et al 20 1 8 haln nranara tn rlacseoifu tha data feam this nawuw ciirvau Camnatitars will slacoifu astennnaminal snuirrac that


https://plasticc.org

What are we learning from these challenges?

1) Training samples: representative samples or biased
observed samples?

2) Probabilities: calibration? statistically meaningtul?

3) Training and testing is done on simulations, how
realistic are these simulations?



What are we learning from these challenges?

1) Training samples: representative samples or biased
observed samples?

2) Probabilities: calibration? statistically meaningtul?

3) Training and testing is done on simulations, how
realistic are these simulations?
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My PhD: new models of Core Collapse Supernovae



My PhD: new models of Core Collapse Supernovae

/0 well observed Core Collapse Supernovae
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My PhD: new models of Core Collapse Supernovae

/0 well observed Core Collapse Supernovae
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My PhD: new models of Supernovae NON la

i New Supernova |
models

| Previous models |

— One “average” spectral — More diversity
template

— Poor “color” coverage — More “colors” information
(especially in the UV)



My PhD: new models of Supernovae NON la

 Previous models

Sl i e

— One “average” spectral — More diversity
template
— Poor “color” coverage — More “colors™ information

(especially in the UV)

— No dust corrections — Dust taken out

Dust

Supernova — Dust alter the

v | observation
. - ; — |t's good for data

augmentation!




Conclusions & What’s next?

« Classification of Type la SNe (vc CC SNe) is one of the
crucial challenges for the study of the evolution of the
Universe.

 The PLASTICC challenge is now the ML benchmark.
However, it poses a very broad problem. Not optimal for the
SNe la vs CC SNe problem

« New CC SNe models can help us to improve training sets for
ML classitiers.



Conclusions & What’s next?

« Classification of Type la SNe (vc CC SNe) is one of the
crucial challenges for the study of the evolution of the
Universe.

 The PLASTICC challenge is now the ML benchmark.
However, it poses a very broad problem. Not optimal for the
SNe la vs CC SNe problem

« New CC SNe models can help us to improve training sets for
ML classitiers.

Thank you!
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—> No UV extension

—> UV extension for
simulations at high redshift
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