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Longitudinal profile measurements

Summary

Hands-on with some typical systems

Outline

Energy & Energy Spectrum measurements
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Summary from Lecture #1
Recap

• There are a lot of properties to measure! 
• Bunch is a 6D object, Beams are made of many different bunches

• Somethings are measured - destructive or multi-shot
• Others can be monitored - single-shot and/or non-invasive

• There is a whole zoo of diagnostic systems and devices
• Ask what a TLA is and what it does

• You need a combination of systems to operate the accelerator
• Even more systems needed to understand the beam!

• All diagnostics have limits…
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Summary From Lecture #2 

• There are many well established off the shelf systems for measuring bunch charge
• Still have to be setup correctly and calibrated accurately

• Imaging the beam profile is a important for doing accelerator physics
• Scintillators are a powerful tool to view beam profiles

• Consider the performance of the whole system for imaging

• Chain of physical processes produces the profile and contribute to performance
• Beam properties, crystal properties, optics properties, camera sensor properties, etc.

• Emittance can be measured by imaging multiple beam(-let) profiles on a screen
• Appreciate the limitations of the screen system when you measure emittance

• Appreciate the whole system, make sensible choices for the beam you (expect to) have

Recap

Any questions from Lecture #2?



Measuring longitudinal profile
How long is the pulse? What does it look like?
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Longitudinal Measurements
Overview

• Aiming to measure either σt or complete ρ(t)
• Making and measuring short pulses important for:

• Wakefield accelerators
• FELs 
• Electron diffraction (pump-probe generally)

• (Another) large topic  - could be multiple lectures on variety of techniques and their limitations

• Focus on 3 techniques to provide an overview:

1. Using external field to manipulate particles: The TDC

2. Generating radiation from the bunch: CTR based BCM

3. Using beams own field to streak particles: Passive Wakefield Streaker 

• Detail is beyond scope of course, focus on key limitations
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Transverse Deflecting Cavity
Overview

TDC = Transverse Deflecting Cavity
Single shot destructive measurement of longitudinal profile
RF cavity profiles a longitudinally varying streaking force to beam
Maps longitudinal profile onto spatial coordinate with appropriate beam optics
Can be used to measure longitudinal phase space and slice properties…

Image: J McKenzie ThesisWheelhouse, A. E., et al. "Commissioning of the Transverse Deflecting Cavity 

on VELA at Daresbury Laboratory." Proc. IPAC’15 (2015).
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TDC Process Schematic 
Simple case
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y

Applying RF field to give a kick which varies in 
amplitude longitudinally within bunch. 

Map kick onto transverse position within bunch.
Transversely image bunch, extract longitudinal 

information.

RF System
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With beam divergence
Just drift length

Drift, L 

With TDC off,
Beam size on
screen is given 
by divergence 
and drift length

z

y

x

y

x

y

TDC On
Longitudinal
slices separated 
on screen
Each slice has
grown through
divergence
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With additional optics
Some quads

Array of quadrupoles

With TDC off,
Beam is
focussed onto 
screen 90°w/ 
phase advance
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Resolution of TDC measurements 
What can you improve?

Define longitudinal shear parameter S such that 

𝑆 = 𝑅3,4
2 𝜋 𝑓 𝑒 𝑉0

𝑐2 𝑝

f = frequency of TDC, V0 = voltage ,p = momentum, 𝑅3,4 = transfer matrix element
𝑅3,4 = length of drift (iff no quads)

Work through to find resolution ,rt ,for initial (TDC off) beam size 𝜎𝑦,0 with emittance 𝜖𝑦: 

𝑟𝑡 =
𝜎𝑦,0

|𝑆|
∝

𝜖𝑦 𝑝

𝑓 𝑉0

• Want 90° betatron phase advance -> map angles to positions
• Want either correctly tuned quads or suitably long drift

• Adding ‘more drift’ (once 90° condition achieved) increases 𝜎𝑦,0
• Does not provide resolution increase

Meaningful resolution improvements: emittance, voltage 
Typical fixed variables: momentum, frequency

More information and discussion in: Röhrs, Michael, et al. "Time-resolved electron beam phase space tomography at a soft x-ray free-electron laser.“ PRSTAB 12.5 (2009): 050704.

Important note:
Imaging beam from a screen!

All resolution limits from 
Lecture #2 also apply!



Thomas Pacey | CI-ACC-212 | 20/03/2023 Page 12

Advanced techniques 
Cutting edge schemes

Marchetti, Barbara, et al. "Experimental 

demonstration of novel beam characterization 

using a polarizable X-band transverse deflection 

structure." Scientific reports 11.1 (2021): 3560.

DESY variable polarisation 
X band TDC PolariX: 
Produces ρ(x,y,t)

Zhao, Lingrong, et al. "Terahertz 

oscilloscope for recording time 

information of ultrashort electron 

beams." Physical review 

letters 122.14 (2019): 144801.

Shanghai University circularly polarised THz streaker:
Broadband bunch length and timing measurements for UED  

Zhao, Lingrong, et al. 

"Terahertz streaking of 

few-femtosecond 

relativistic electron 

beams." Physical Review 
X 8.2 (2018): 021061.

Shanghai university THz slit 
system:
Ultrashort bunch length 
and timing measurements 
for UED  
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Coherent Transition Radiation BCM 
Overview

BCM = Bunch Compression Monitor
Single-shot monitor for bunch length
Detects intensity of coherent radiation emitted by bunch
Shorter bunches -> higher intensity of radiation

CTR BCM = Coherent Transition Radiation BCM
Single-shot destructive monitor for bunch length
Detects coherent radiation emitted as beam goes through metal target
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CTR Bunch length information
Subtitle

Beam

Broadband TR lobes from a 
single electron

• Coherent enhancement occurs when we have multiple emitters in phase
• For a bunch with N particles:  

Spectral 
intensity  

Single particle spectrum 
(target properties, particle 
energy etc.)

Form factor:
Fourier transform of 
longitudinal profile

Bunch emits radiation with a spectrum 
depending on bunch profile. Transport the 
radiation, measure the spectrum, extract 

bunch profile.

Coherent 
enhancement 
with N2
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CTR measurement schemes
Generally applicable to other ‘beam generating THz’ diagnostics

• Highly compact (low footprint) longitudinal diagnostic
• For picosecond and below electron beams: working in THz – far IR regime
• Challenges: Optics, detectors, alignment, signal levels, vacuum windows…

• Three potential options for measurement:

1. Capture intensity of CTR emitted -> single shot, more CTR, shorter bunches…
• Pros: Straightforward, low cost, single shot
• Cons: limited information, prone to errors 

2. Use an interferometer to measure CTR spectrum 
• Pros: Off shelf optics, well developed in spectral range of interest, can maintain broadband response
• Cons: Multi-shot limitation, time consuming, transport & alignment non-trivial

3. Directly measure spectrum of CTR in single shot spectrometer
• Pros: High quality information, single shot
• Cons: High cost, custom components needed, developing broadband difficult, fine spectral resolution difficult 

Other techniques are possible, beyond scope here



Thomas Pacey | CI-ACC-212 | 20/03/2023 Page 16

Real beams – Intensity Measurements
Limitations of simple techniques

• Real beams aren’t Gaussian
• Variation of Form Factor with ‘compression’ isn’t straightforward
• Even in simulation can develop ‘high frequency’ features

CLARA BA1 2019

Maximum compression
(Bunch length RMS & 
FWHM shortest) 

Over-compression: 
Enhances high frequency 
features
High frequency features 
transported with reduced 
losses.
More CTR detected even 
though bunch is longer
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Passive Wakefield Streaking
Hybrid technique  - beams own field kicks particles

Dielectric/corrugated structure

Beam generates a streaking wakefield.
Head of the beam kicks the tail. 

Map kick onto transverse position within bunch.
Transversely image bunch, extract longitudinal 

information.
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Passive Streaking
Pros and Cons

Pros

• Single shot

• Fully passive – no power needed

• Self-Synchronised – timing jitter does not 

impact resolution 

• Generates high fields for short pulses

• Cheap structures 

• Dielectric wakefields supported up to >MV/m 

level

• Small total footprint, no RF, no lasers

Cons

• Requires sufficient charge for a given momentum (to 

get kick angle high enough)

• Non-linear wakefields have to be considered

• Reconstruction of profile non-trivial

• Requires on-shot charge measurement for accuracy

• Resolution of measurement varies with bunch length

• Resolution of measurement varies along bunch, poor 

at head

• Relatively novel technique, still optimising schemes
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Measuring Energy Spectrum
What is the beam energy? What is the spectrum?
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Overview – Measuring Energy & Energy Spread

• Aiming to measure <pz > or complete ρ(pz)

• Describing components needed and the beam dynamics process

• Indicative/instructive example based on ‘imagined beamline’
• Other experimental techniques possible

• Identify error sources, add systems to correct what we can

• Other equivalent lattices for measuring momentum

• Procedure matters

All schematic/sketch diagrams, all first order considerations. 
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Bending with a EM dipole
Simplest case

BPM: Measures Horizontal Positon

ρ

𝜌 ≈
𝑝0
𝑒𝐵

𝐵𝜌 𝑇𝑚 ≈ 3.3356 𝑝0 [GeV/c]

EM Dipole: magnetic field B, powered by current I
Beam, momentum p

• ρ is a fixed property of lattice; 
• dipole bends so many degrees to get beam into centre of pipe 

• Zero position of BPM tells when on axis 
• Procedure to find p0:   

• Find current I such that beam is central on BPM 
• Infer B from I, or have direct B measurement
• Momentum is calculated directly
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Bending with a EM dipole
Sources of errors #1

BPM: Measures Horizontal Positon

ρ

EM Dipole
Beam, momentum p

Miss-steer here
Input positon and 
angle wrong

Still set the aligned 
positon on BPM by 
increasing I

Different bend 
angle achieved

No longer know ρ
Inaccurately measure momentum!
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Aligning into spectrometer
Fixing steering & offset errors

BPM

SCR 3
ρ

EM Dipole

2 small 
horizontal 
correctors

• Procedure:   
• Set dipole off
• Using correctors, align beam onto SC1 and SC2
• Set dipole on, repeat p0 procedure:

• Find current I such that beam is central on BPM & on SCR3 (cross check) 
• Infer B from I, or have direct B measurement
• Momentum is calculated directly

Screen: 1 SCR 2
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Bending with EM Dipole 
More important error sources

• Procedure requires switching dipole ‘On’ and ‘Off’

• If just controlling coil current I -> will create remnant field in poles
• Setting current to 0 and beam still bends!

• For a given current, no longer know the true B field
• Produces inaccurate momentum measurement
• Must degauss dipoles (requires polarity reverse of power supply)

• Also note:
• BPM & dipole power supply sets precision of measurement
• BPM ‘zero position’ calibration contributes to accuracy

• How well the BPM system ‘knows its centre’
• Survey tolerances - mechanical accuracy of beamline – contributes to accuracy

• How well the BPM centre is positioned in the beamline 
• How well the screen centres are aligned, SCR1 and SCR2
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Measuring energy spectrum #1
Separating the energies

𝜌 ≈
𝑝

𝑒𝐵
𝐵𝜌 𝑇𝑚 ≈ 3.3356 𝑝 [GeV/c]

Dipole generates dispersion, Dx

Δ𝑥 = 𝐷𝑥
Δ𝑝

𝑝0

ρ

EM Dipole
H Corrs.

SCR 1 SCR 2

SCR 3

• Procedure:   
• Setup as in momentum measurement to evaluate p0

• Measure distribution of particles on screen
• Find Dx at screen (measured or inferred) 
• With a calibrated screen image map  positions to momentum variation

Understand your screen 
coordinates.

Lower energy particles are 
bent more by dipoles.

Dx can be found through variation of <x> with B
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Measuring energy spectrum #2
Vital transverse dynamics

• In the absence of the dipole, the beam size changes
• Can diverge or converge. Will be different in both planes
• Size depends on emittance and beta function

• Obvious statements -> impacts the spectrum measurement!

Dipole off
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Measuring energy spectrum #2
Vital transverse dynamics

With the dipole on, particle location at screen depends on both Dispersion and Beta function 

𝜎𝑥 = 𝐷𝑥
𝜎𝑝

𝑝0
+ 𝜖𝑥𝛽𝑥

To get a momentum spectrum must minimise βx so that dispersion dominates the image
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Measuring energy spectrum #2
Vital transverse dynamics

ρ

EM Dipole
H Corrs. SCR 1 SCR 2

SCR 3

• Procedure:   
• Setup as in momentum measurement to evaluate p0

• Use quads Q-1,2,3 to reduce horizontal beam size on SCR3
• Finding minimal beam size sets small βx

• Be mindful of introducing offsets, may need to iterate p0 procedure
• Maintain control of vertical beamsize
• Now record measurements of momentum spectrum

Quadrupoles
Q-1,2,3

Can switch off EM dipole 
and focus onto SCR2 as 
a starting point
Requires matching s
position in lattice
Some (sector) dipoles 
will also focus
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Measuring energy spectrum #3
Dealing with large energy spread

Dipole generates dispersion, Dx

Δ𝑥 = 𝐷𝑥
Δ𝑝

𝑝0

For large momentum spread, particles may not make it to screen.
Screen is at a fixed location and with a fixed size!

ρ

EM Dipole
H Corrs.

Q1,2,3

SCR 2

SCR 3

SCR 1



Thomas Pacey | CI-ACC-212 | 20/03/2023 Page 31

Measuring energy spectrum #3
Dealing with large energy spread

ρ

EM Dipole
H Corrs.

SCR 1 SCR 2

SCR 3

Dx can be found through variation of <x> with B

Q1,2,3
Q4

Dipole generates dispersion, Dx

Δ𝑥 = 𝐷𝑥
Δ𝑝

𝑝0
Quad Q4 modifies Dx at SCR3 so that 
Whole spectrum Δ𝑝 fits within 
screen Δ𝑥

• Procedure:   
• Setup as in momentum measurement to evaluate p0

• Use quads Q4 to fit spectrum onto SCR3
• Measure Dx

• Repeat βx minimisation procedure
• Collect energy spectra

Q4 also changes βx !!
If you touch it: repeat 
procedure.
If you change dipole: repeat 
procedure.
Be careful, keep track of 
procedures, iterate as 
needed.
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Measuring energy spectrum #3
Dealing with large energy spread

ρ

EM Dipole
H Corrs.

SCR 1 SCR 2

SCR 3

Dx can be found through variation of <x> with B

Q1,2,3
Q4

Dipole generates dispersion, Dx

Δ𝑥 = 𝐷𝑥
Δ𝑝

𝑝0
Quad Q4 modifies Dx at SCR3 so that 
Whole spectrum Δ𝑝 fits within 
screen Δ𝑥

• Procedure:   
• Setup as in momentum measurement to evaluate p0

• Use quads Q4 to fit spectrum onto SCR3
• Measure Dx

• Repeat βx minimisation procedure
• Collect energy spectra

Q4 also changes βx !!
If you touch it: repeat 
procedure.
If you change dipole: repeat 
procedure.
Be careful, keep track of 
procedures, iterate as 
needed.

Do not forget you are measuring a beam on a screen!
You are also limited by:
• Scintillator properties
• Imaging resolution
• Camera properties
• And the rest…
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Summary 
Take homes

• Longitudinal profiles can be measured by 
• Kicking the particles with a TDC
• Measuring spectrum of coherent radiation produced from the beam
• Generating a wakefield to passively streak the beam

• Resolution of each method is affected by different bunch and diagnostic parameters

• Appropriate technique for each machine is a function of:
• Control/flexibility of beam parameters, available space in lattice, money, and expertise

• Measuring momentum of particles requires several diagnostics to produce accurate 
results

• Measuring energy spectrum of particles requires a detailed procedure for precise 
and accurate results
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Resources
References &  links for images and further reading

• DESY TDC measurements, longitudinal & LPS
• https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.12.050704

• Theory of TR and CTR
• https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.11.012801

• Variable Polarisation TDC 
• https://www.nature.com/articles/s41598-021-82687-2#article-info

• CLARA Front End Review (BCM measurements)
• https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.044801

• J McKenzie thesis - VELA TDC measurements:
• https://livrepository.liverpool.ac.uk/3031981/

• VELA TDC Commissioning – IPAC15
• https://accelconf.web.cern.ch/ipac2015/papers/wepha054.pdf

• THz Slit streaker
• https://journals.aps.org/prx/pdf/10.1103/PhysRevX.8.021061

• THz oscilloscope 
• https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.144801

https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.12.050704
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.11.012801
https://www.nature.com/articles/s41598-021-82687-2#article-info
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.044801
https://livrepository.liverpool.ac.uk/3031981/
https://journals.aps.org/prx/pdf/10.1103/PhysRevX.8.021061
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