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Introduction

I Random, non-comprehensive set of things I found interesting
I Some local colour
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Traditional Bulgarian folk dance
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Temporary hotel room upgrade
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Conference venue
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Conference dog
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Nearby hills
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Steve Farrell, Wahid Bhimji, Thorsten Kurth,
Mustafa Mustafa, Debbie Bard, Zarija Lukic,
Ben Nachman, Harley Patton

Next Generation 
Generative Neural 
Networks for HEP

CHEP 2018, Sofia Bulgaria



HEP simulation

• Simulation is an essential application for HEP
• We have very powerful tools for simulation

– And active R&D programs
• But gall darn is it expensive!

– Large cost in CPU resources
– Large manpower cost in developing

fast-simulation methods



Deep learning generative models
• Deep neural networks that learn to sample 

from a data distribution
– Transform a simple “noise” distribution to 

the target distribution
• Popular examples:

– Variational Autoencoder (VAE)
– Generative Adversarial Network (GAN)

• The GAN framework poses the problem as a 
trainable two-player game

– A generator tries to produce realistic samples
– A discriminator tries to distinguish real from 

fake samples
• GANs are notoriously unstable to train

• Difficult to define good metrics for learning



Pileup GAN - µ=20

Real

Fake

Sum of 
jet mass

• The GAN gives realistic looking 
pileup images

• When overlayed onto RPV events, we 
see realistic shifts in the distributions

Number 
of jets



Deep learning on FPGAs for L1 trigger 
and Data Acquisition

Javier Duarte, Sergo Jindariani, Ben Kreis, Ryan Rivera, Nhan Tran (Fermilab) 
Jennifer Ngadiuba, Maurizio Pierini (CERN) 

Edward Kreinar (Hawkeye 360) 
Phil Harris, Song Han, Dylan Rankin (MIT) 

Zhenbin Wu (University of Illinois at Chicago) 
Sioni Summers (Imperial College London)

CHEP 2018, 9-13 July 2018, Sofia, Bulgaria



Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs10.07.2018

Data processing @ LHC
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L1 Trigger
Exploration of ML algorithms in         
low-latency, real-time processing 
has just begun!

What can we do in < us on one FPGA?

ML methods typically employed in offline 
analysis or longer latency trigger tasks


Many successes in HEP: identification of b-quark 
jets, Higgs candidates, particle energy regression, 
analysis selections, ….



Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs10.07.2018

Case study: jet tagging
• Study a 5-output multi-classification task: discrimination q, g, W, Z, t initiated jets
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• Fully connected neural network with 16 inputs: 

- mass (Dasgupta et al., arXiv:1307.0007), multiplicity, energy 
correlation functions (Larkoski et al., arXiv:1305.0007) 

- expert-level features not necessarily realistic for L1trigger, 
but the lessons here are generic

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

AUC = area under ROC curve 
(100% is perfect, 20% is random)better
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•We have three handles:


- compression: reduce number of synapses or neurons 

- quantization: reduces the precision of the calculations (inputs, 
weights, biases) 

- parallelization: tune how much to parallelize to make the 
inference faster/slower versus FPGA resources

•We focus on tuning the neural network inference such that it uses the 
FPGA resources efficiently and meets latency constraints

Efficient NN design for FPGAs



Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs10.07.2018

Summary
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We introduced a new software/firmware package hls4ml 

Automated translation of everyday machine learning inference into firmware in ~ minutes 
Tunable configuration for optimization of your use case 

First application is single FPGA, <1 us latency for L1 trigger or DAQ 
Explore also applications for acceleration with CPU-FPGA co-processors for long latency 

trigger tasks 

For more info 
- https://hls-fpga-machine-learning.github.io/hls4ml/ 
- https://arxiv.org/abs/1804.06913



Lindsey Gray, Lothar Bauerdick, Bo Jayatilaka, Gabe Perdue (FNAL),  
Josh Bendavid (CERN)
12 July, 2018

Blockchain for Large Scale Scientific Computing



Blockchain in a nutshell

I Pseudonymous paper and code (Satoshi Nakamoto) led to concept of
Bitcoin in 2009

I Relies on functions that are difficult to compute, but easy to verify
I e.g. factorisation: 5775 = 3× 5× 5× 7× 11

I Blockchain: distributed graph of participants
I Does not require a central trusted “ledger” of transactions
I Most applications financial: can it be used in HEP?
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12 July 2018 Lindsey Gray | Blockchain for HEP

Putting it all together for HEP Computing (simple example!)

�16
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Nodes define needed 
resources and available jobs

Miners compute or store 
scientifically interesting data and 
use cryptographic protocol to 
prove fidelity of results for reward!

The blockchains maintain 
consensus over job states 
and quality of results with 
smart contracts and 
transaction logs

A further blockchain maintains 
the consensus between all of 
respective sub-chains.

All powered by useful 
computations rather than 
hashing!



Quantum Computing
Elizabeth Sexton-Kennedy for James Amundson, Fermilab, Batavia, Illinois USA
CHEP 2018
2018-07-12



Quantum Computing Excitement
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Nov. 13, 2017



More Quantum Computing Excitement
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October 16, 2017



Quantum Computing Excitement Has Reached the U.S. Congress
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June 8, 2018

…and Congress
Appropriates 
money



• Peter Shor: A general-purpose quantum 
computer could be used to efficiently factor 
large numbers
– Shor’s Algorithm (1994)
– Resource estimates from LA-UR-97-4986 

“Cryptography, Quantum Computation and 
Trapped Ions,” Richard J. Hughes (1997)

Where the Excitement Started
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num
size

1024 
bits

2048 
bits

4096 
bits

qubits 5124 10244 20484

gates 3x1010 2x1011 2x1012 n.b. This is an old estimate; 
improvements have been made 
in the meantime.Analog of clock cycles in classical computing



hard

• Classical Computing
– “Easy” problems can be solved in “polynomial 

time” (P)
– “Hard” problems require “nondeterministic 

polynomial time” (NP)
• Proving P ≠NP is a great unsolved problem in 

computer science
• Quantum Computing

– Some problems are easy in quantum computing, 
but hard in classical computing -> quantum 
complexity classification

– Some problems appear to be hard either way

Theoretical Computer Science
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P≠NP ?

quantumly easy

classically 
easy



• Shor’s Algorithm: factorization   -- Speedup: Superpolynomial
• Grover’s Algorithm: search   -- Speedup: Polynomial
• If there exists a positive constant α such that the runtime C(n) of the best known 

classical algorithm and the runtime Q(n) of the quantum algorithm 
satisfy C=2Ω(Qα)) then the speedup is superpolynomial, otherwise it’s polynomial.

• Many more available at the Quantum Algorithm Zoo 
https://math.nist.gov/quantum/zoo/
– A catalog of 60 quantum Algorithms in 3 categories:
• Algebraic and Number Theoretic Algorithms -> cryptography 
• Oracular Algorithmsàoptimization and machine learning
• Approximation and Simulation Algorithms -> quantum physics and chemistry

Quantum Algorithms
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Qubit architecture

4

…
many
more

Ion trap

Scientific Reports 4, 3589 (2014)

NMR

Sci. China Phys. Mech. Astron.
59:630302 (2016)

NV center

Phys. Rev. B 86, 125204 (2012)

Quantum dot

Nature Nanotechnology
9, 981–985 (2014)

Linear optical

J. Opt. Soc. Am. B, 24, 2,
209-213 (2007)

Superconducting

Ann. Phys. (Berlin)
525, 6, 395–412 (2013) 

• Thanks to Andy Li
– Fermilab Scientific 

Computing Division’s first 
quantum computing 
postdoc! 

• Superconducting is the
most prominent
commercial HW and was
presented at CHEP2016

Current and Near-term Quantum Hardware
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• The number of gates that can be applied 
before losing quantum coherence is the 
limiting factor for most applications
– Current estimates run few – thousand
– Not all gates are the same
• The real world is complicated

• IBM has a paper proposing a definition of 
“Quantum Volume”
– Everyone else seems to dislike the particular 

definition
– The machines with the largest number of 

qubits are unlikely to have the largest 
quantum volume

Counting Qubits is Only the Beginning

18-07-12 Sexton/Amundson | Quantum Computing16

num
bits

1024 
bits

2048 
bits

4096 
bits

qubits 5124 10244 20484

gates 3x1010 2x1011 2x1012

• “Logical qubits” incorporating error 
correction are the goal
– Probably require ~1000 qubits per 

logical qubit
• Minimum fidelity for constituent qubits 

is the current goalpost

From the earlier factoring estimate



• Quantum Chemistry has the first big successes in quantum 
simulation.

• GitHub has a project for general simulations of interacting 
fermions.

• However, interesting HEP systems, e.g., QCD, also require 
boson-fermion interactions.

Successful Quantum Simulation
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https://github.com/quantumlib/OpenFermion



• Quantum computing holds the promise of remarkable new computational 
capabilities
– The future is not here yet
• … but we are getting there

• Fermilab has quantum computing efforts on many fronts
– Quantum Applications
– HEP technology for QC
– QC technology for HEP experiments
– Quantum Networking

Conclusions
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https://www.smbc-comics.com/comic/the-talk-3



Square Kilometre Array

Rosie Bolton

SKA and its data processing



SKA’s Global footprint
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11 member countries: AUS, CAN, CHN, ESP, GBR, IND, ITA, NED, NZL, RSA, SWE
Currently in discussion with others: FRA, GER, JPN, KOR, POR, SUI



(Light reading: https://what-if.xkcd.com/63/)

Calabretta, Stavely-Smith and Barnes, 2014 (Re-processing of archival HI Parkes All-Sky Survey 
data)

This map ~100 MBytes

Why not? 
Exascale era – data centres approaching 
Exaflops and ExaByte capacities 
Exa-sky astronomy era? 
• Better spatial resolution (1 arcsec) 
• Better frequency coverage (~0.05-15 

GHz) 
• Better frequency resolution (~1-10kHz) 
• 20 Exabyte sky!
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SKA Science Drivers

Testing General Relativity
Cosmic Dawn

Galaxy Evolution

Cradle of Life

Cosmology

Cosmic Magnetism
Exploration of the Unknown

Very broad range of science



Crab Nebula: Simulated SKA1-LOW snapshot image compared to LOFAR snapshot 

(noiseless images; target PSF ~10" at 140 MHz)

SKA science performance
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Data flow challenges
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Desert site

Perth / 
Cape Town

World users

10 – 50 x data rate reduction by SDP

SDP



For SKA data rates and volumes emerging from central signal processor 
are so high that we will not be in a position to store the raw data from the 
Central Signal Processor 

• it will be cheaper to re-observe than store the raw data indefinitely 

The science data processor becomes a schedulable resource of  
the telescope for observation planning

Data flow challenges
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SKA will be the biggest radio observatory in the world 
• 50 lifetime – commissioning data ~2024, Key Science start 2028 
• Use cases -  science led, very open 

Data processing within the observatory ~250 Pflop/s, challenging power, memory 
bandwidth, computational efficiency. 

Delivery to Regional Centers up to 6-700 Pbytes/year (100 gbit/s out of  each site) 

Users do not “get” their data 
•  SRC science gateway to visualise data products, develop SRC pipelines and extract 

final products (e.g. plots) 
•  SRCs will be community led, hopefully based on a collaborative model 
•  SRCs are unlikely to be dedicated HW – must support a mix of  different  models and 

architectures.

Summary



Summary

I More machine learning: fast, doing more things, using dedicated
hardware

I Quantum computing growing
I Blockchain?
I SKA has a similar but distinct set of problems to LHC
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