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Collective Effects in Particle Accelerators

There are six lectures in this course on collective effects in

accelerators:

1. Space charge and scattering

2. Wake fields and impedances

3. Potential well distortion and the microwave instability

4. Head-tail instability

5. Coupled-bunch instabilities

6. Luminosity and the beam-beam effect
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Coupled-bunch instabilities: objectives of this lecture

So far, we have looked at single-bunch instabilities, in which

the charge distribution within an individual bunch in an

accelerator fails to reach an equilibrium.

Wake fields can also lead to coupled-bunch instabilities, where

the coherent (transverse or longitudinal) oscillations of one

bunch can drive oscillations in other bunches in an accelerator.

By the end of this lecture, you should be able to:

• outline a simple model for coupled-bunch instabilities in an

accelerator;

• describe some of the principal phenomena associated with

the resistive-wall instability;

• explain how feedback systems can be used to suppress

coupled-bunch instabilities.
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Coherent betatron oscillations

In this lecture, we shall consider transverse coupled-bunch

instabilities; longitudinal instabilities can also occur, and behave

in much the same way.

We shall treat each bunch as a single “macroparticle”

performing betatron oscillations as it moves around a storage

ring. In the absence of wake fields (and effects such as

synchrotron radiation and decoherence) the betatron amplitude

will remain constant.

The presence of wake fields can lead to the motion of one

bunch driving oscillations of other bunches, resulting in an

overall growth of the oscillation amplitudes of the bunches.

Our first goal will be to derive an expression for the growth rate

of coherent betatron oscillations of bunches in a storage ring,

in terms of the storage ring parameters and the wake function.
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Equation of motion with wake fields

In the absence of wake fields, the coherent vertical motion of a

bunch in a storage ring has the equation of motion:

ÿ + ω2
βy = 0, (1)

where y is the vertical co-ordinate, the double dot indicates the

second derivative with respect to time, and ωβ is the betatron

frequency.

Where wake fields are present, with wake function W⊥(−∆z), a

single bunch in a storage ring will see the wake field generated

by that bunch on earlier turns. The force from the wake field

can be included in the equation of motion as a driving force:

ÿ + ω2
βy = −

N0e
2c2

E0C0

∞∑
k=1

W⊥(−kC0)y(t− kC0/c). (2)

The bunch has total charge N0e and energy E0, and C0 is the

ring circumference.
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Equation of motion with wake fields

If there are many bunches in the storage ring, then we need to

sum the contribution to the total wake field (at any point in

the ring) from every bunch on every turn.

The equation of motion then becomes:

ÿn + ω2
βyn =

−
N0e

2c2

E0C0

∞∑
k=1

M−1∑
m=0

W⊥

(
−kC0 −

m− n
M

C0

)
ym

(
t− k

C0

c
−
m− n
M

C0

c

)
.

(3)

Here, yn is the vertical co-ordinate of the nth bunch, k is an

index for the turn number, and m is an index (in the

summation for the total wake force) for each bunch.

M is the total number of bunches. Note that we assume (for

simplicity) that the bunches are equally spaced around the ring,

and all have the same number of particles.
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Equation of motion with wake fields

To understand the dynamics of the bunches in the presence of

wake fields, we need to find solutions to the equation of motion

(3).

We shall assume that there are solutions of the form:

yµn(t) = A exp
(

2πi
µn

M

)
e−iΩµt, (4)

where the integer µ is an index to distinguish different solutions.

For a given value of µ, the solution (4) takes the form of a

“wave” around the ring, with wavelength C0/µ and oscillation

frequency Ωµ...
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Coupled bunch modes

µ = 0

µ = 1

µ = 2

µ = 3

µ = 4

µ = 5

µ = 6

µ = 7
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Coupled bunch modes
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Coupled bunch modes
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Solution of the equation of motion

To find an expression for Ωµ (in terms of the storage ring

parameters and the wake function), we substitute the solution

(4) into the equation of motion (3).

A positive imaginary part in Ωµ represents an exponential

growth in oscillation amplitude, and hence indicates the

presence of an instability.

After some working, we find by substituting the solution (4)

into the equation of motion (3):

Ωµ ≈ ωβ − i
MN0e

2c2

4πνyE0C0

∞∑
p=−∞

Z⊥
(
(pM + µ)ω0 + ωβ

)
. (5)

Here, νy is the betatron tune, and Z⊥(ω) is the transverse

impedance (obtained from the wake function W⊥(−∆z) by a

Fourier transform).
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Solution of the equation of motion

For a given wake function, we can evaluate (5) to find the

frequencies of the different coupled bunch modes.

The exponential growth rates of the different modes are given

by the imaginary part of the corresponding frequency Ωµ.

As an example, let us consider the wake fields generated as a

consequence of the finite conductivity of the vacuum chamber,

i.e. the resistive-wall wake fields.

We shall find that an instability (known as the resistive-wall

instability) always exists in this case.
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Resistive-wall instability

The transverse wake function describing the wake fields arising

from the finite conductivity of a circular vacuum chamber is

given by:

W⊥(z) = −
2

πb3

√
Z0c

4π

c

σ

L
√
−z

, z < 0, (6)

where Z0 is the impedance of free space, and the vacuum

chamber has radius b, length L and conductivity σ.

The corresponding impedance is:

Z⊥(ω) ≈ (1− isgn(ω))
L

ωb3

√
Z0c

4π

2|ω|
πσ

. (7)

Note that |Z⊥(ω)| → ∞ as ω → 0: the impedance becomes large

at low frequencies.
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Resistive-wall instability

The frequencies Ωµ of different beam modes µ are given by

(5). Since for resistive-wall wake fields the impedance becomes

large at low frequency, the summation in (5) is dominated by

terms for which:

(pM + µ)ω0 + ωβ ≈ 0, and hence: µ ≈ −pM − νy. (8)

We can restrict the mode index to 0 ≤ µ < M : outside this

range, the modes simply repeat. We then see that the

strongest effects of the resistive-wall wake fields are for modes:

µ ≈M − νy. (9)

These are the modes for which, at fixed points in the ring, the

lowest beam oscillation frequencies are observed.
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Resistive-wall instability

For given ring and beam parameters, we can plot the growth

rates of the different modes: for resistive-wall wake fields, the

plot has a characteristic shape.

Roughly half the modes are damped (are stable); but the

amplitudes of the other modes grow with time (are unstable).

The strongest growth rates occur for mode numbers M − νy.
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Resistive-wall instability

The growth rate of a given mode can be found by taking the

imaginary part of the frequency for that mode.

In the case of resistive-wall wake fields, the mode for which the

amplitude grows most rapidly has growth rate:

1

τ
=
MN0e

2c2

4πνyE0

1

πb3

√
Z0c

4π

1

σ

√
2π

ω0(1−∆y)
, (10)

where the betatron tune is written:

νy = Ny + ∆y (11)

for integer Ny and 0 ≤∆y < 1.
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Resistive-wall instability

Resistive-wall wake fields can drive coupled-bunch modes with
growth times of hundreds or tens of turns.

In practice, the beam can be stable at low currents because
natural damping effects (synchrotron radiation damping, and
decoherence) can suppress modes with slow growth rates.

As more current is injected into a ring, at some point a mode
will become unstable. Bunch oscillations will grow until some
current is lost from the beam, and the beam becomes stable
again.

The instability appears as a “current limit” in the storage ring.
To keep the beam stable at higher currents, it is possible to
use bunch-by-bunch feedback systems.

Bunch-by-bunch feedback systems add to the damping from
natural mechanisms. Modern feedback systems can achieve
damping times of order 20 turns.
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Bunch-by-bunch feedback systems

An ideal feedback system would detect the position of a single

bunch, and apply a single kick to restore the bunch to its

correct trajectory.

Because of technical limitations, feedback systems apply a

series of small kicks over several turns to correct bunch

trajectories.
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Feedback systems: “grow-damp” measurements

Feedback systems can be used to measure the growth rates of

coupled bunch modes and the damping rate achieved by the

feedback system: these measurements are sometimes known as

“grow-damp” measurements.

A beam is stored at high current with the feedback system

turned on to maintain beam stability.

The feedback system is then turned off, and the transverse

position of each bunch is recorded turn-by-turn using a suitable

pick-up.

Turning the feedback system back on before the beam is lost

allows the damping rate of the feedback system to be

measured.
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Feedback systems: “grow-damp” measurements

Grow-damp measurements from the Advanced Light Source.

J. Fox et al, “Multi-bunch instability diagnostics via digital feedback systems

at PEP-II, DAΦNE, ALS and SPEAR”, Proceedings of the 1999 Particle

Accelerator Conference, New York, 1999.
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Coupled-bunch instabilities: summary

Coupled bunch instabilities in a storage ring can be studied

using a model in which each bunch is represented as a single

macroparticle performing coherent betatron (or synchrotron)

oscillations.

Long-range wake fields couple the motion of each bunch to the

motion of all other bunches in the ring.

The system of coupled equations of motion for all bunches in

the ring has an (approximate) solution in which the bunch

displacements travel as a wave around the ring.

Each mode (wavelength) of oscillation has a frequency that

can be found by substituting the wave-like solution into the

equation of motion: the growth (or damping) rate of each

mode is given by the imaginary part of the frequency.
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Coupled-bunch instabilities: summary

In the presence of resistive-wall wake fields, a beam in a

storage ring always has modes that are unstable.

However, the stability of a beam in a storage ring can be

maintained by means of a bunch-by-bunch feedback system.
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