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Collective Effects in Particle Accelerators

There are six lectures in this course on collective effects in

accelerators:

1. Space charge and scattering

2. Wake fields and impedances

3. Potential well distortion and the microwave instability

4. Head-tail instability

5. Coupled bunch instabilities

6. Luminosity and the beam-beam effect
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Head-tail instability: objectives of this lecture

In the previous lecture, we discussed the microwave instability

as an example of a single-bunch (or coasting beam)

longitudinal instability.

Instabilities can appear in the transverse motion as well as the

longitudinal motion. In this lecture, we shall discuss the

head-tail instability, as an example of an instability involving

both transverse and longitudinal motion.

By the end of this lecture, you should be able to:

• outline the mechanism leading to the head-tail instability;

• describe some of the principal phenomena associated with

the head-tail instability.
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Transverse single-bunch instabilities

Single-bunch instabilities involving longitudinal and transverse

motion can be difficult to describe (and analyse)...
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The macroparticle model

Some of the important aspects of the head-tail instability can

be understood in terms of a (relatively) simple model of a

bunch as consisting of just two particles, each with charge

equal to half the total bunch charge.

We shall base our analysis of the head-tail instability on this

model of a bunch consisting of two macroparticles.

At the end of the lecture, we shall briefly outline more

sophisticated models, needed to describe the more complex

behaviour of bunches displaying transverse instabilities.
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Transverse motion with wake fields: equations of motion

Consider a “bunch” consisting of two particles in a storage

ring, with particle 1 ahead of particle 2 by a distance of order

of the bunch length σz. We assume that the particles are

ultra-relativistic.

Both particles will perform betatron oscillations as they travel

around the ring. In the absence of wake fields, the betatron

frequency is determined solely by the focusing in the lattice.

When wake fields are present, the trailing particle will

experience additional forces from the wake field generated by

the leading particle.

Synchrotron motion means that the leading and trailing

particles interchange roles after half a synchrotron period, Ts.
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Transverse motion with wake fields: equations of motion
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Transverse motion with wake fields: equations of motion

Consider the case that particle 1 is leading particle 2.

Because the particles are ultra-relativistic, the motion of

particle 1 will not be affected by any (short-range) wake fields

from particle 2.

The equation of motion for transverse oscillations of particle 1

can be written:

ÿ1 + ω2
βy1 = 0, (1)

where the dots indicate a (second) derivative with respect to

time, and ωβ is the betatron oscillation frequency.
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Transverse motion with wake fields: equations of motion

Particle 2 will observe the wake field from particle 1. When the

particles pass through a section of the accelerator with wake

function W⊥(−∆z), the transverse deflection of particle 2 from

the wake field will be:

∆p2 = −
e2N0

2E0
y1W⊥(−∆z), (2)

where each particle has total charge eN0/2 and total energy

E0N0/2. y1 is the transverse co-ordinate of particle 1, and the

particles have longitudinal separation ∆z.

The deflection can be included as a “driving force” in the

equation of motion for particle 2. Taking into account the

usual betatron oscillation, the equation of motion is:

ÿ2 + ω2
βy2 = −

c2e2N0

2E0
y1
W⊥(−∆z)

L
, (3)

where L is the length of the accelerator section with wake

function W⊥(−∆z).
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Transverse motion with wake fields: equations of motion

To solve the equations of motion (1) and (3), we need to make

some assumptions and approximations. In particular, we

assume that we can make a linear approximation for the wake

function, so that:

W⊥(−∆z) =
∆z

σz
W0, (4)

where W0 is a constant and σz is the bunch length.

Furthermore, let us assume that W0 characterises the

transverse wake function over the entire circumference of the

storage ring, so that the wake function per unit length is

W0 ∆z/C0σz, where C0 is the circumference of the ring.

Finally, we shall assume that the beta function is

(approximately) constant, so that the betatron frequency ωβ is

also constant.
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Transverse motion with wake fields: equations of motion

With these assumptions and approximations, the equations of

motion (when particle 1 is ahead of particle 2) are:

ÿ1 + ω2
βy1 = 0, (5)

ÿ2 + ω2
βy2 = −iAy1e

−iωst, (6)

where the constant A is defined:

A =
c2e2N0

2E0

W0

C0
. (7)

Note that we have taken the synchrotron motion into account

by writing:

∆z = iσze
−iωst, (8)

where ωs is the synchrotron frequency. The particles start with

zero separation at t = 0, and particle 1 remains ahead of

particle 2 (so that ∆z is positive) for half a synchrotron period.
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Solution to the equations of motion

The next step is to find a solution to the equations of motion

(5) and (6). For particle 1, the solution is straightforward:

y1(t) = y1(0)e−iωβt. (9)

Particle 2 has a natural oscillation at frequency ωβ, but is also

subject to a driving force at frequency ωβ + ωs. Thus, we write

a solution to the equation of motion (6):

y2(t) = B1e
−iωβt +B2e

−i(ωβ+ωs)t, (10)

The constants B1 and B2 can be determined from the initial

condition B1 +B2 = y2(0), and by substituting the solution

(10) into the equation of motion (6).

Assuming that ωs � ωβ, we find:

B2 ≈
iAy1(0)

2ωβωs
, B1 ≈ y2(0)−

iAy1(0)

2ωβωs
. (11)
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Solution to the equations of motion

After some further algebra (an exercise for the student!) we

find from the solution to the equations of motion:(
y1
y2

)
t=Ts/2

≈ e−iωβTs/2
(

1 0
ia 1

)(
y1
y2

)
t=0

, (12)

where Ts = 2π/ωβ is the synchrotron period, and the constant a

is given by:

a =
A

2ωβωs

(
eiωβTs/2 − 1

)
. (13)
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Solution to the equations of motion

After half a synchrotron period, the roles of the particles are

reversed, so that particle 2 sees no wake field, but particle 1

experiences the wake field from particle 2.

By symmetry, we can immediately write down, for the

transverse co-ordinates of the particles after a full synchrotron

period: (
y1
y2

)
t=Ts

≈ e−iωβTs/2
(

1 ia
0 1

)(
y1
y2

)
t=Ts/2

. (14)

Combining equations (12) and (14) we obtain:(
y1
y2

)
t=Ts

≈ e−iωβTs
(

1 ia
0 1

)(
1 0
ia 1

)(
y1
y2

)
t=0

, (15)

≈ e−iωβTs
(

1− a2 ia
ia 1

)(
y1
y2

)
t=0

. (16)
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Solution to the equations of motion

Equation (16) provides us with a “transfer matrix” R for the

motion of the two (macro)particles over a full synchrotron

period:

R = e−iωβTs
(

1− a2 ia
ia 1

)
(17)

Since the matrix is symplectic (it is a 2× 2 matrix with unit

determinant) we can say immediately that the motion of the

particles will be stable if the trace of the transfer matrix has

magnitude less than 2, that is:∣∣∣2− a2
∣∣∣ < 2. (18)
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Transverse motion with wake fields: stability condition

Using (13) and assuming the maximum magnitude for

a = |A|/ωβωs, the stability condition (18) can be written in

terms of the ring and beam parameters:

c2e2N0W0

2ωβωsC0E0
< 2. (19)

In terms of the total bunch population N0, the stability

condition is:

N0 <
16π2νβνsE0

e2W0C0
, (20)

where νβ and νs are the betatron and synchrotron tunes,

respectively.
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Transverse motion with wake fields: stability condition

Equation (20) expresses a limit on the bunch population in a

storage ring, above which the betatron oscillation amplitudes of

particles in the bunch will increase exponentially, driven by the

transverse wake fields.

The instability that occurs when the bunch population exceeds

the limit (20) is known as the “fast head-tail instability”.
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Transverse motion with wake fields: stability condition

The presence of transverse wake fields will also lead to a shift

in the frequency of betatron oscillations performed by the

particles.

We can find the frequency shift from the solution to the

equations of motion.

The frequencies of the normal modes are given by the

eigenvalues of the full 4× 4 transfer matrix, describing the

changes in co-ordinates and the transverse momenta of the

particles over one synchrotron period.

We do not give the details of the calculation here: for further

information, see (for example) “Beam Dynamics in High

Energy Particle Accelerators,” (Wolski, 2014) section 15.4.1.
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Transverse motion with wake fields: stability condition

If the wake fields are weak, then the normal mode frequencies

are purely real: the particles perform betatron oscillations with

constant amplitude.

If the wake fields are increased (e.g. by increasing the bunch

charge) the betatron frequencies acquire non-zero imaginary

parts.

At this point the oscillation amplitude of one mode will be

damped, but the amplitude of the other mode will grow

(exponentially)...
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Transverse motion with wake fields: stability condition
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Real and imaginary parts (solid and dashed lines, respectively)

of normal mode frequency shifts (in units of the synchrotron

frequency), as a function of wake field strength.
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Transverse motion with wake fields: stability condition

It is important to remember that in deriving the stability

condition (20), we made a number of assumptions and

approximations. In particular, our analysis has been based on a

rather crude model of a bunch consisting of just two

macroparticles.

We should not expect equation (20) to give anything more

than a rough indication of the limit of beam stability, in the

presence of transverse wake fields.
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Effect of chromaticity

We have also ignored some important effects, including (for

example) chromaticity.

If chromaticity is taken into account, then the behaviour of the

system is modified: the instability in this case is known as the

“head-tail instability” (rather than the “fast head-tail

instability”).

The head-tail instability has no threshold, but occurs for any

non-zero value of the chromaticity.

However, the growth rates are slow enough that (especially for

small, positive chromaticity) the instability can generally be

suppressed by natural damping effects such as radiation and

decoherence.
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Transverse mode-coupling instability

A more sophisticated model of transverse single-bunch

instabilities can be developed using the Vlasov equation.

The Vlasov equation describes the evolution of a charge

distribution, rather than the motion of individual

(macro)particles.

Recall that our analysis of the microwave instability (a

longitudinal single-bunch instability) in Part 3 of this lecture

course was developed from the Vlasov equation.

The analysis of transverse single-bunch instabilities is similar in

some ways to the analysis of the microwave instability, but

starts from the Vlasov equation extended to include transverse

as well as longitudinal degrees of freedom.
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Transverse mode-coupling instability

We do not go into details here of the analysis of transverse

instabilities using the Vlasov equation, but simply mention the

main result.

It is found that perturbations to a given distribution have

different oscillation frequencies, depending on the given

distribution and the mode of the perturbation.

Wake fields shift the mode oscillation frequencies: if the wake

fields are strong enough, the frequencies of two different modes

can become equal.

When this happens, the frequencies acquire non-zero imaginary

parts, indicating the exponential growth of the perturbation,

i.e. the onset of an instability, known as the “transverse

mode-coupling instability”.
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Transverse mode-coupling instability
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Mode frequencies in transverse and longitudinal degrees of

freedom, as a function of the wake field strengths.
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Transverse mode-coupling instability

For further details, see (for example):

• A.W. Chao, “Physics of Collective Beam Instabilities in

High Energy Accelerators,” Wiley (1993).

• A. Wolski, “Beam Dynamics in High Energy Particle

Accelerators,” Imperial College Press (2014).
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Head-tail instability: summary

A simple model of a transverse single-bunch instability can be
developed using a model of the bunch as two macroparticles.

With some assumptions, and ignoring chromaticity, it is found
that there is a threshold (in terms of the bunch charge, or the
wake field strength) above which the betatron oscillations of
the particles grow exponentially. The instability in this case is
known as the fast head-tail instability.

With non-zero chromaticity, there is no threshold, but the
beam appears always to be unstable. However, in practice it is
often possible to suppress the instability by operating with a
small positive chromaticity.

A more sophisticated model of transverse single-bunch
instabilities, including the transverse mode-coupling instability
can be developed using the Vlasov equation to describe the
evolution of a charge distribution in transverse and longitudinal
degrees of freedom.
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