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Part 3

Potential Well Distortion,
the Microwave Instability and Landau Damping



Collective Effects in Particle Accelerators

There are six lectures in this course on collective effects in

accelerators:

1. Space charge and scattering

2. Wake fields and impedances

3. Potential well distortion and the microwave instability

4. Head-tail instability

5. Coupled bunch instabilities

6. Luminosity and the beam-beam effect
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Objectives of this lecture

In this lecture, we shall discuss how wake fields in a storage

ring can change the longitudinal distribution (potential well

distortion), or lead to a beam instability (microwave instability).

By the end of this lecture, you should be able to:

• explain how the Haissinski equation can be used to

determine the equilibrium longitudinal distribution of charge

in a bunch in a storage ring in the presence of wake fields;

• outline the mechanism leading to the microwave instability;

• explain what is meant by Landau damping, and describe

how (below a threshold bunch charge) Landau damping can

suppress the development of the microwave instability;

• apply simple approximate formulae to estimate the

microwave instability threshold in a storage ring.
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Equilibrium charge distribution in an electron storage ring

In an electron storage ring, the combined effects of synchrotron

radiation and longitudinal focusing (from the RF cavities)

determine the longitudinal distribution of charge within

individual bunches.

Longitudinal wake fields can contribute to the change in energy

of particles as a bunch moves around a storage ring. If the

wake fields are long enough, this can have observable effects.

The effects depend on the strengths of the wake fields. The

wake fields may be weak enough that their effects are

negligible; or, they may be strong enough to distort the

equilibrium shape of the bunch (potential well distortion).

Very strong wake fields can lead to an instability, in which the

longitudinal charge distribution fails to reach equilibrium at all.

Collective Effects in Accelerators 3 Part 3: PWD and Microwave Instability



Example: Potential Well Distortion in the SLC Damping Ring
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Equilibrium charge distribution in an electron storage ring

To understand the impact of wake fields on the charge
distribution, we first consider a simpler case: the motion of a
single particle in the absence of wake fields.

We shall first review the equations of motion for a single
particle performing synchrotron oscillations in a synchrotron
storage ring.

We shall then show that the equilibrium bunch length and
energy spread are both described by Gaussian distributions.

In an electron storage ring, the equilibrium energy spread is
determined by synchrotron radiation. The equilibrium bunch
length is related to the energy spread by the parameters of the
storage ring.

After reviewing these results for the case without wake fields,
we shall consider the impact that longitudinal wake fields will
have on the equilibrium distribution.
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Equilibrium charge distribution in an electron storage ring

Averaged over one turn of the storage ring, the rate of change

of the longitudinal co-ordinate z (relative to a reference particle

at the centre of the bunch) is determined by the momentum

compaction factor αp of the lattice and the energy deviation

δ = (E − E0)/E0 of the particle:

dz

ds
= −αpδ, (1)

where s is the longitudinal position along the closed orbit.

The momentum compaction factor is determined by the optics:

αp =
1

C0

∮
ηx

ρ
ds, (2)

where C0 is the circumference of the orbit, ηx is the dispersion

function, and ρ is the radius of curvature of the closed orbit.
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Equilibrium charge distribution in an electron storage ring

The rate of change of the energy of the particle (averaged over

the lattice) is given by the energy gain from the RF cavities

and the energy loss from synchrotron radiation:

dδ

ds
=

eVRF

E0C0
sin

(
φs −

ωRFz

c

)
−

U

E0C0
, (3)

where VRF is the RF voltage; E0 is the beam energy; φs is the

synchronous phase; ωRF is the RF frequency; and U is the

energy lost per turn through synchrotron radiation.

The synchronous phase is determined by the condition that a

particle arriving at the RF cavities with z = 0 gains exactly the

right amount of energy from the RF voltage to balance the

energy lost in one turn from synchrotron radiation:

eVRF sin(φs) = U. (4)
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Equilibrium charge distribution in an electron storage ring

The synchrotron radiation energy loss per turn, U , depends on

the energy of the particle: the more energy a particle has, the

more energy it loses in the dipoles from synchrotron radiation.

This effect leads to the damping of synchrotron oscillations.

However, to a first approximation, we can neglect radiation

damping, and set U = U0, where U0 is the energy lost by a

particle with the reference energy E0.

If we assume that z is small, so that the particle crosses the RF

cavities close to the synchronous phase, then the equations of

motion (1) and (3) become (with some approximations...):

dz

ds
= −αpδ, (5)

dδ

ds
= −

eVRF

E0C0

ωRF

c
cos(φs)z. (6)
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Equilibrium charge distribution in an electron storage ring

Equations (5) and (6) describe simple harmonic motion in

longitudinal phase space (with co-ordinate z and conjugate

momentum δ), with angular frequency ωs given by:

ω2
s

c2
= −

eVRF

E0C0

ωRF

c
αp cos(φs). (7)

The equations of motion (5) and (6) can be derived from a

Hamiltonian:

H = −
1

2
αpδ

2 −
1

2αp

ω2
s

c2
z2, (8)

by applying Hamilton’s equations:

dz

ds
=
∂H

∂δ
,

dδ

ds
= −

∂H

∂z
. (9)
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Equilibrium charge distribution in an electron storage ring

The Hamiltonian is a constant of the motion. Therefore, any

function of the Hamiltonian will also be a constant of the

motion.

An equilibrium distribution of charge within a bunch has the

property that it remains unchanged (invariant) from one turn

to the next, even though individual particles within the bunch

move around the phase space.

Putting together the two statements above, we should be able

to write the equlibrium distribution (describing all the particles

within a bunch) as a function of the Hamiltonian (which

describes the motion of individual particles).
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Equilibrium charge distribution in an electron storage ring

At low bunch charges, where the longitudinal wake fields are

negligible, the longitudinal charge distribution in an electron

storage ring is usually Gaussian:

Ψ(z, δ) = Ψ0 exp

(
−
H

H0

)
= Ψ0 exp

(
−
z2

2σ2
z

)
exp

(
−
δ2

2σ2
δ

)
, (10)

where Ψ(z, δ) is the charge density in longitudinal phase space,

with peak value Ψ0 at z = δ = 0.

H is the Hamiltonian (8), and H0 is a constant related to the

rms energy spread:

H0 = αpσ
2
δ . (11)

Note that the Hamiltonian (8) determines the relationship

between the rms bunch length σz and the rms energy spread σδ:

σz =
αpc

ωs
σδ. (12)
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Equilibrium charge distribution in an electron storage ring

Although this analysis gives the shape of the equilibrium

distribution, it does not give specific values for σδ or σz.

In the absence of synchrotron radiation, any value for the

energy spread (within a limit set by the RF acceptance) can

yield an equilibrium distribution.

But in electron storage rings, the equilibrium energy spread is

determined by the balance between radiation damping and

quantum excitation.

In the absence of collective effects (i.e. in the limit of low

bunch charge) the equilibrium energy spread in an electron

storage ring depends on the beam energy and the lattice

design: see Appendix A.
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Effect of wake fields on the equilibrium charge distribution

Let us now consider the impact of wake fields on the
equilibrium charge distribution in an electron storage ring.

The longitudinal wake function W‖(∆z) for a given section of
beam line is defined so that for a particle of charge e following
a particle of charge Ne through the beam line, the change in
energy of the trailing particle is:

∆δ = −
Ne2

E0
W‖(∆z), (13)

where ∆z is the longitudinal distance between the two particles.

For a particle within a bunch, we have to sum the contributions
from all the “slices” within the bunch ahead of the given
particle:

∆δ(z) = −
e

E0

∫ ∞
z

λ(z′)W‖(z − z
′) dz′, (14)

where λ(z) is the longitudinal charge density (charge per unit
length, C/m) within the bunch.
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Effect of wake fields on the equilibrium charge distribution

If the wake function W‖(∆z) represents the wake field for the

entire storage ring, then the equations of motion (5) and (6)

become:

dz

ds
= −αpδ, (15)

dδ

ds
=

ω2
s

αpc2
z −

e

E0C0

∫ ∞
z

λ(z′)W‖(z − z
′) dz′, (16)

where ωs is the synchrotron frequency in the absence of wake

fields, given by (7).

These equations of motion can again be derived from a

Hamiltonian, which now takes the form:

Hwf = −
1

2
αpδ

2 −
ω2
s

2αpc2
z2 +

e

E0C0

∫ z
0
dz′

∫ ∞
z′

dz′′ λ(z′′)W‖(z
′ − z′′).

(17)
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Effect of wake fields on the equilibrium charge distribution

Using the same reasoning as before, the equilibrium distribution

can be assumed to be a function of the Hamiltonian, Hwf.

Assuming that the particles again have a Gaussian momentum

distribution, the charge density in longitudinal phase space will

be given by:

Ψ(z, δ) =

Ψ0 exp

(
−
δ2

2σ2
δ

)
exp

(
−
z2

2σ2
z

+
e

αpσ2
δE0C0

∫ z
0
dz′

∫ ∞
z′

dz′′ λ(z′′)W‖(z
′ − z′′)

)
,

(18)

where, as before:

σz =
αpc

ωs
σδ. (19)
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Effect of wake fields on the equilibrium charge distribution

Since the longitudinal charge density λ(z) is given by:

λ(z) =
∫ ∞
−∞

Ψ(z, δ) dδ, (20)

we can integrate both sides of (18) with respect to δ, to obtain

an integral equation for λ(z), known as the Haissinski equation:

λ(z) = λ0 exp

(
−
z2

2σ2
z

+
e

αpσ2
δE0C0

∫ z
0
dz′

∫ ∞
z′

dz′′ λ(z′′)W‖(z
′ − z′′)

)
.

(21)

The value of the constant λ0 is determined by the condition

that the integral over λ(z) is equal to the total charge in the

bunch: ∫ ∞
−∞

λ(z) dz = Ne, (22)
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Effect of wake fields on the equilibrium charge distribution

The synchrotron radiation effects are not affected by the wake

fields, so the rms energy spread σδ remains the same as in the

case without wake fields (45).

However, the longitudinal distribution λ(z) is affected by the

presence of wake fields. The equilibrium distribution depends

on the lattice parameters, beam energy, wake fields and bunch

charge.

Note that the parameter σz in equation (21) corresponds to the

rms bunch length in the limit of zero bunch charge (i.e. σz is

the rms equilibrium bunch length without wake fields). This is

sometimes called the natural bunch length.
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Example: potential well distortion in the ILC damping rings

As an example, we consider potential well distortion in the
damping rings for the International Linear Collider (ILC).

The damping rings take the large emittance beams from the
electron and positron sources, and produce small emittance
beams for acceleration and collision. The bunch length is a key
parameter.

Circumference 6476 m
Beam energy 5 GeV
Natural bunch length, σz 6 mm
Particles per bunch 2×1010

Arc cell phase advance 72◦ 90◦ 100◦

Momentum compaction, αp 2.9×10−4 1.6×10−4 1.3×10−4

Natural emittance, γεx 6.4 µm 4.4 µm 3.9 µm
RF voltage 32.6 MV 20.4 MV 17.1 MV

Note that the momentum compaction factor can be adjusted by changing

the phase advance in the arc cells. A larger momentum compaction factor

raises the threshold for some beam instabilities; but means that a larger RF

voltage is needed to achieve the specified bunch length.
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Example: potential well distortion in the ILC damping rings

The first step is to calculate the wake fields from numerical
solutions to Maxwell’s equations for a bunch of charged
particles passing through a given section of the vacuum
chamber.

In the ILC damping rings, the BPMs are expected to make a
significant contribution to the longitudinal wake fields.

CST Particle Studio is used to compute the wake potential for
a short (few mm) bunch passing through a BPM section: the
wake field is the derivative of the wake potential.
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Example: potential well distortion in the ILC damping rings

The wake function is the wake field produced by a bunch of
charged particles in the limit of zero bunch length.

The wake field is the convolution of the charged particle
distribution in the bunch with the wake function.

Hence, the wake function is obtained by deconvolving the wake
field and the bunch profile.
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Example: potential well distortion in the ILC damping rings

Having obtained the wake function, the equilibrium bunch
profile can be found for different bunch charges by solving
(numerically) the Haissinski equation (21).

The solutions to the Haissinski equation (solid lines in the
above plot) can be compared with the results from particle
tracking (dots). At high bunch charges, no equilibrium solution
exists: the bunch is unstable.
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Example: potential well distortion in the ILC damping rings

The effect of potential well distortion on the longitudinal phase
space distribution can be seen by plotting the rms bunch length
and rms energy spread as functions of the bunch population.

Note that the rms energy spread remains (roughly) constant up
to a bunch population of (roughly) 30× 1010 particles: if the
population is increased beyond this point, the bunch becomes
unstable (fails to reach an equilibrium).
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Microwave instability

In the remainder of this lecture, we shall discuss how wake
fields can lead to instability in the longitudinal phase space
distribution of charge in individual bunches in a storage ring.

We shall focus on a type of instability known as the
“microwave instability”. This is characterised by the
appearance of structures within a bunch on a scale small
compared to the overall bunch length.

Observation of single-bunch
longitudinal instability in the
Los Alamos PSR, caused by
an inductive impedance.

From C. Beltran, A.A. Browman
and R.J. Macek, “Calculations and
observations of the longitudinal
instability caused by the ferrite
inductors at the Los Alamos Proton
Storage Ring”, Proceedings of the
2003 Particle Accelerator
Conference, Portland, Oregon.
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Liouville’s theorem and the Vlasov equation

To understand the behaviour of a bunch of particles that is not

in equilibrium, we need an equation describing the dynamics of

the charge distribution within the bunch.

An appropriate description is provided by the Vlasov equation,

which may be “derived” from Liouville’s theorem.

Liouville’s theorem tells us that in a storage ring, if we neglect

synchrotron radiation and collective effects, the density of

charge in phase space is constant. This can be expressed:

dΨ

ds
= 0, (23)

where Ψ is the charge per unit volume in phase space, and s is

the distance along the reference trajectory.
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Liouville’s theorem and the Vlasov equation

For simplicity, we shall consider the case of a “coasting beam”:
we neglect synchrotron radiation, and assume that there are no
RF cavities in the ring.

Let us consider just the longitudinal phase space, with
co-ordinate θ = 2πs/C0 (where C0 is the ring circumference)
and conjugate momentum δ (the energy deviation of a particle).

We shall further assume that the longitudinal motion is
decoupled from the transverse (horizontal and vertical) motion.

With these assumptions, Liouville’s theorem (23) can be
expressed:

∂Ψ

∂s
+
dθ

ds

∂Ψ

∂θ
+
dδ

ds

∂Ψ

∂δ
= 0. (24)

Equation (24) is the Vlasov equation: it is a partial differential
equation describing the evolution of charge density in the
longitudinal phase space of a coasting beam in a storage ring.
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The Vlasov equation

Single-bunch beam instabilities can be described by

non-stationary solutions to the Vlasov equation.

However, in general, solving the Vlasov equation is not easy.

Usually, accurate solutions can only be obtained by numerical

integration.

In some cases, an approach based on perturbation theory can

be useful. In this approach, we consider a small change to an

assumed equilibrium distribution.

If we find (from the Vlasov equation) that the size of the

perturbation grows over time, then this indicates the presence

of an instability.
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Perturbation approach to the Vlasov equation

The steps appropriate for an analysis of the microwave

instability are as follows:

1. Assume an initial phase space distribution of the form:

Ψ(θ, δ; t) = Ψ0(δ) + ∆Ψ ei(nθ−ωnt), (25)

where Ψ0(δ) is an assumed stationary (equilibrium)

distribution, and ∆Ψ is the amplitude of a density

modulation with “wavelength” C0/n and oscillation

frequency ωn.

2. Substitute the distribution into the Vlasov equation, and

expand each term to first order in ∆Ψ.

3. Solve the resulting equation for the frequency of oscillation

of the perturbation, ωn.

If there is a solution for ωn with a positive imaginary part, then

the amplitude of the perturbation will grow exponentially: this

indicates an instability.
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The dispersion relation

Following these steps (see Appendix B) we obtain an integral
equation for the frequency ωn:

1 = −iZ‖(ωn)
eI0
C0E0

∫ ∞
−∞

∂Ψ0/∂δ

(nω − ωn)
dδ. (26)

Here, I0 is the beam current (associated with the phase space
distribution Ψ0), C0 is the ring circumference, E0 is the beam
energy, ω = ω0 (1− αpδ) is the particle revolution frequency
assuming momentum compaction factor αp, and Z‖(ωn) is the
longitudinal impedance of the ring.

Equation (26) relates the wavelength of the density modulation
(characterised by the “mode number” n) to the frequency of
the modulation: it is known as the dispersion relation.

In practice, as a result of random fluctuations in the particle
density, all modes will be present to some extent. Therefore, if
there exists a mode n for which the frequency ωn has a positive
imaginary part, then the beam is likely to be unstable.
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The dispersion relation

Note that the dispersion relation includes the average beam

current I0 and the beam energy E0: from the form of the

dispersion relation, we can see that the stability of the beam

depends on the ratio I0/E0.

In practice, the smaller this quantity (lower current, or higher

energy) the more likely the beam is to be stable.

Note also that the stability of the beam depends on the form of

the energy distribution Ψ0: we shall consider this point in more

detail shortly.
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The dispersion relation

Because of the various assumptions and approximations that
we have made, the dispersion relation usually gives only a
rough indication of beam stability.

Furthermore, because we have retained terms in the Vlasov
equation only up to first order in the perturbation ∆Ψ, the
dispersion relation can only give an indication of whether the
beam is stable or not: it cannot be used to describe the
behaviour of the beam if an instability is present.

A more rigorous analysis of beam stability in a storage ring
needs to be based on solution of the full Vlasov equation,
without (for example) linearising the equation by retaining
terms to first order in a specified density perturbation.

Usually, a rigorous analysis will depend upon numerical
techniques: however, the analytical methods that we describe
in this lecture can still be useful for providing some insight into
the physical mechanisms associated with beam instabilities.
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Example 1: a “cold” beam

As an example, let us consider the case of a “cold” beam, i.e. a
beam with zero energy spread.

In this case, the energy spread is described by a Dirac delta
function: the energy distribution function Ψ0(δ) is zero, except
for δ = 0.

Integrating by parts, and using ω = ω0(1− αpδ), gives:∫ ∞
−∞

∂Ψ0/∂δ

(nω − ωn)
dδ =

∫ ∞
−∞

Ψ0

(nω − ωn)2
n
∂ω

∂δ
dδ = −

nω0αp

(nω − ωn)2
.

(27)
We then find from the dispersion relation:

(nω0 − ωn)2 = iZ‖(ωn)
I0
E0/e

nω2
0αp

2π
, (28)

and hence:

ωn

nω0
= 1±

√√√√iZ‖(ωn)

n

I0
E0/e

ω0αp

2π
. (29)
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Example 1: a “cold” beam

From equation (29) we see that (except in the very special

case that the impedance has complex phase 3π/2) there is

always a solution for ωn with positive imaginary part.

Hence, a beam with zero energy spread will always be unstable

in the presence of any longitudinal impedance.

This is because there is no mechanism in this case for

suppressing or damping the growth of an instability: any

density modulation on the beam will generate longitudinal wake

fields, which will act on the beam to modulate the energy of

the particles, leading to a variation in revolution frequency and

an enhancement of the original density modulation.

Collective Effects in Accelerators 32 Part 3: PWD and Microwave Instability



Landau damping

In practice, there will always be some spread in energy for the
particles in a storage ring.

Combined with the (non-zero) momentum compaction of the
lattice, the energy spread will lead to a range in revolution
frequency for the particles in the beam.

The spread in revolution frequencies means that any density
modulation will tend to get “smeared out” over some number
of turns, leading to a reduction in the amplitude of the density
modulation.

If the rate of reduction in amplitude of the density modulation
is sufficient to suppress the growth in amplitude from the
impedance, then the beam will be stable.

The suppression of the beam instability arising from the spread
in energy of particles in the beam is known as “Landau
damping” (from a similar effect described by Landau in plasma
physics).
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Example 2: a beam with a Gaussian energy spread

As an example of the effect of Landau damping, let us consider

the case of a beam in a storage ring with Gaussian energy

spread:

Ψ0 =
e−δ

2/2σ2
δ

√
2πσδ

. (30)

Substituting this into the dispersion relation (26) gives:

1 = i
Z‖(ωn)

n

I0

(2π)3/2(E0/e)αpσ
2
δ

∫ ∞
−∞

ζ e−ζ
2/2

ζ + ∆n
dζ, (31)

where:

∆n =
ωn − nω0

nω0αpσδ
. (32)
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Example 2: a beam with a Gaussian energy spread

The dispersion relation in this case, equation (31), appears
rather formidable.

However, we are only really interested in whether the beam is
stable or not, and this can be determined from the imaginary
part of ωn; and hence, from the imaginary part of ∆n.

To apply the dispersion relation to determine the stability of
the beam, we write the dispersion relation in the form:

F (n) = U + iV, (33)

where:

F (n) =
Z‖(ωn)

n

I0

(2π)3/2(E0/e)αpσ
2
δ

, (34)

and:

U + iV =

i ∫ ∞
−∞

ζ e−ζ
2/2

ζ + ∆n
dζ

−1

. (35)
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Example 2: a beam with a Gaussian energy spread

For a known impedance, by making the approximation

Z‖(ωn) ≈ Z‖(nω0), we can plot a curve in the complex plane

representing the real and imaginary parts of F (n) over a range

of values of n.

Similarly, we can plot a curve representing U + iV for a range

of real values of ∆n. This curve represents a “boundary of

stability”: on one side of the curve, Im(∆n) < 0, and on the

other side Im(∆n) > 0.

If all the points on the curve of F (n) lie in the region where

Im(∆n) < 0, the beam is likely to be stable.

If any points on the curve of F (n) lie in the region where

Im(∆n) > 0, the beam is likely to be unstable (for modes

corresponding to the values of n for which F (n) is in the

unstable region).
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Example 2: a beam with a Gaussian energy spread

As an example, consider the case of a storage ring with a

broad-band impedance, with characteristic frequency ωr:

Z‖(ω) = Z‖(ωr)
1− iω

2−ω2
r

ωrω

1 + (ω2−ω2
r )2

ω2
rω

2

. (36)
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Example 2: a beam with a Gaussian energy spread

We can now plot F (n) for a range of values of n (red curve),

and U + iV for a range of real values of ∆n (black curve).

We have chosen beam and storage ring parameters so that the

red curve just touches the black curve: under these conditions,

the storage ring is operating at an instability threshold.
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Example 2: a beam with a Gaussian energy spread

The instability threshold corresponds to the condition:

I0 =
π2
√

2π

3
αpσ

2
δ

E0/e

Z‖(ωr)/n
. (37)

This represents the maximum current that can be injected into

the storage ring while maintaining beam stability.

We see that we can raise the instability threshold by:

• increasing the momentum compaction factor or the energy

spread: this increases the rate of Landau damping;

• increasing the beam energy: this increases the beam

rigidity;

• reducing the impedance.
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Application to bunched beams

It should be remembered that the analysis so far has applied to

coasting beams. However, in some circumstances we can also

apply the stability criterion to bunched beams.

In the stability diagram shown earlier, the first mode to become

unstable has a frequency ω ≈ 1.2ωr, hence the mode number is:

n ≈ 1.2
ωr

ω0
, (38)

where ω0 = 2πc/C0 is the (angular) revolution frequency.

The broad-band impedance of a storage ring usually has

characteristic frequency ωr � c/b, where c is the speed of light

and b is the beam pipe radius.
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Application to bunched beams

In an electron storage ring, the beam pipe radius is typically of

the same order of magnitude as the bunch length σz. Hence,

the first mode to become unstable is such that:

C0

n
� σz. (39)

In other words, the length scale of the density modulation

resulting from an instability is likely to be short compared to

the bunch length.

In this case, if the timescale of the instability is short compared

to the synchrotron period, then from point of view of the

instability there is little distinction between a coasting beam

and a bunched beam.

Under the above conditions, we can apply the same stability

criterion to a bunched beam as to a coasting beam.
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Application to bunched beams

Finally, we assume (following Boussard) that in applying the

stability criterion to a bunched beam, we should replace the

average current I0 by the peak current Î, which for a Gaussian

bunch is:

Î =
ecN0√
2πσz

, (40)

where N0 is the number of particles in a bunch.

Then for bunched beams in an electron storage ring, the

stability criterion can be written (as a limit on the impedance):

Z‖(ωr)

n
<
π2

6
Z0
γαpσ2

δ σz

reN0
, (41)

where Z0 ≈ 376 Ω is the impedance of free space, γ is the

relativistic (Lorentz) factor corresponding to the reference

energy E0, and re ≈ 2.82× 10−15 m is the classical radius of the

electron.
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The Keil–Schnell criterion

A further commonly used approximation is to

replace the stability boundary obtained from

Im(∆n) = 0 (black curve in the figure, right)

with a circle of radius 1/
√

2π (red curve).

The stability criterion for coasting beams is

then: ∣∣∣∣∣Z‖(ωr)n

∣∣∣∣∣ < 2π
E0/e

I0
αpσ

2
δ , (42)

which is known as the Keil–Schnell criterion.

For bunched beams, the stability criterion is:∣∣∣∣∣Z‖(ωr)n

∣∣∣∣∣ <
√
π

2
Z0
γαpσ2

δ σz

reN0
, (43)

which is known as the Keil–Schnell–Boussard

criterion.
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Characteristics of the microwave instability

The type of instability that we have described often appears as

a modulation in charge density within individual bunches in a

storage ring, on a length scale of order of a millimetre.

The charge density modulation can lead to the emission of

detectable microwave radiation: the instability is therefore

often known as the “microwave instability”.

As we have already mentioned, since our analysis is based on

linearising the Vlasov equation (i.e. keeping terms only up to

first order in the density modulation ∆Ψ), we can only estimate

the threshold of the instability: we cannot describe how the

beam behaves above threshold.
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Characteristics of the microwave instability

We can use tracking simulations to study the behaviour of the

charge distribution in a bunch above the instability threshold.
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Characteristics of the microwave instability

Further theoretical analysis, together with numerical modelling

and experimental studies, indicate that above the instability

threshold there is an increase in beam energy spread following a

1/3 power law:

σδ = σδ,0 + k(N0 −Nth)
1
3, (44)

where σδ,0 is the natural energy spread (in the limit of zero

bunch charge), N0 is the bunch population, and Nth is the

bunch population at the instability threshold.

The increase in energy spread leads to an increase in the bunch

length.

The microwave instability is also sometimes known as

“turbulent bunch lengthening”.
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Characteristics of the microwave instability

Y.-C. Chae et al, ”Measurement of the longitudinal microwave instability in

the APS storage ring”, Proceedings of the 2001 Particle Accelerator

Conference, Chicago (2001).
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Summary: Potential well distortion

In an electron storage ring in the absence of wake fields, the

beam generally has a Gaussian distribution in longitudinal phase

space.

Wake fields can drive beam instabilities; but at low currents

(below instability threshold) the beam distribution can still

reach an equilibrium.

Below instability threshold, longitudinal wake fields have little

impact on the energy spread, but the longitudinal charge profile

within a bunch can be changed: this effect is known as

potential well distortion.

The equilibrium charge profile in the presence of longitudinal

wake fields is described by the Haissinski equation.
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Summary: Microwave instability

At high bunch currents, short-range wake fields drive beam

instabilities where the charge within the bunch fails to reach an

equilibrium.

The dynamics of the charge distribution in longitudinal phase

space for a single bunch is described by the Vlasov equation.

With some approximations and assumptions, it is possible to

find a solution to the Vlasov equation that relates the

frequency of a small modulation on the charge density to the

wavelength of the modulation: the equation describing this

relationship is known as the dispersion relation.

The stability of a modulation of given wavelength is determined

by the imaginary part of the oscillation frequency of the

modulation, which can be found from the dispersion relation.
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Summary: Microwave instability

A “cold” beam (with zero energy spread) is always unstable in

the presence of longitudinal wake fields.

When the energy spread is non-zero, the effects of momentum

compaction lead to particles moving round the ring at different

rates, depending on their energy deviation.

As a result, with non-zero energy spread (and non-zero

momentum compaction) any modulation in charge density

tends to get “smeared out”, suppressing the development of a

beam instability: this process is known as Landau damping.
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Summary: Microwave instability

At sufficiently high bunch currents, Landau damping becomes

insufficient to prevent the development of beam instability.

A common single-bunch instability occurs when density

modulations on a length scale of order 1 mm (or less) grow

rapidly in amplitude: this instability is known as the microwave

instability.

A rough estimate for the threshold for the microwave instability

can be found by applying the Keil–Schnell–Boussard criterion.
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Appendix A: Equilibrium energy spread in electron storage rings

Analysis of the synchrotron radiation effects gives:

σ2
δ = Cqγ

2 I3
I2 + I4

, (45)

where γ is the relativistic factor, and Cq is a constant:

Cq =
55~

32
√

3mec
≈ 3.832× 10−13 m. (46)

The synchrotron radiation integrals I2, I3 and I4 are given by:

I2 =
∮ 1

ρ2
ds, I3 =

∮ 1

|ρ|3
ds, I4 =

∮
ηx

ρ

(
1

ρ2
+ 2k1

)
ds,

(47)

where ρ is the local radius of curvature of the closed orbit; ηx is

the dispersion function; and:

k1 =
1

Bρ

∂By

∂x
(48)

is the quadrupole field gradient scaled by the beam rigidity Bρ.
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Appendix B: Derivation of the dispersion relation

To complete an explicit form for the Vlasov equation, we need

to write expressions for dθ/ds and dδ/ds.

The rate at which a particle moves around the ring depends on

the momentum compaction factor of the ring αp and the

energy deviation of the particle δ:

dθ

ds
= ω0(1− αpδ), (49)

where (for ultrarelativistic particles) ω0 = 2πc/C0 is the angular

revolution frequency for a particle with the reference energy.
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Appendix B: Derivation of the dispersion relation

Recall that the change in energy of a particle resulting from the
longitudinal wake fields is given by the convolution of the
current spectrum with the longitudinal impedance.

For simplicity, let us assume that the charge distribution around
the ring is described by a sinusoidal modulation, superposed on
a uniform distribution.

In other words, the beam current observed at a point
θ = 2πs/C0 in the ring is given by:

I(θ, t) = I0 + ∆I ei(nθ−ωnt). (50)

In this case, the beam current spectrum has only a dc
component, and a component at frequency ωn.

Assuming that the dc impedance is zero, the change in energy
of a particle in one revolution of the ring is then:

∆E = −e∆I Z‖(ωn) ei(nθ−ωnt). (51)
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Appendix B: Derivation of the dispersion relation

If the beam distribution in phase space is normalised so that:∫ ∞
−∞

Ψ0 dδ = 1, (52)

then the amplitude of the current modulation is:

∆I = I0

∫ ∞
−∞

∆Ψ dδ. (53)

The change in energy of a particle in one revolution of the ring

is then:

∆E = −Z‖(ωn) e I0

∫ ∞
−∞

∆Ψ dδ ei(nθ−ωnt). (54)

Hence, the rate of change of the energy deviation is:

dδ

ds
=

∆E

C0E0
= −Z‖(ωn)

eI0
C0E0

∫ ∞
−∞

∆Ψ dδ ei(nθ−ωnt). (55)
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Appendix B: Derivation of the dispersion relation

We can now substitute the expressions for dθ/ds (49) and dδ/ds

(55) into the Vlasov equation (24), together with the assumed

solution (25).

Expanding to first order in the perturbation ∆Ψ we obtain:

∆Ψ = −iZ‖(ωn)
eI0
C0E0

∫ ∞
−∞

∆Ψ dδ
∂Ψ0/∂δ

(nω − ωn)
, (56)

where ω = ω0(1− αpδ).

Finally, we integrate both sides of this equation over δ, to

obtain:

1 = −iZ‖(ωn)
eI0
C0E0

∫ ∞
−∞

∂Ψ0/∂δ

(nω − ωn)
dδ. (57)
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