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Collective Effects in Particle Accelerators

There are six lectures in this course on collective effects in

accelerators:

1. Space charge and scattering

2. Wake fields and impedances

3. Potential well distortion and the microwave instability

4. Head-tail instability

5. Coupled-bunch instabilities

6. Luminosity and the beam-beam effect
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Objectives of the Course

By the end of the course, you should be able to:

• describe a range of effects from collective interactions on

beam behaviour in high-energy particle accelerators,

including space charge, scattering and wake field effects;

• explain how wake fields and impedances can be used to

characterise the forces on particles arising from the

presence of other particles in an accelerator;

• describe some simple models for single-bunch and

coupled-bunch instabilities, and use simple formulae to

estimate instability thresholds and growth rates;

• describe the impact of beam-beam interactions in colliders;

• explain how various countermeasures (such as damping

mechanisms and feedback systems) can be used to suppress

the impact of collective effects.
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Space charge and scattering: objectives of this lecture

In this lecture, we shall discuss the effects arising from

electromagnetic fields generated by a beam acting directly on

particles within the beam.

The forces in this case are known as space-charge forces.

We shall also discuss effects resulting from direct “collisions”

between particles within a bunch.

Effects of collisions include intrabeam scattering, and the

Touschek effect.
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Space charge and scattering: objectives of this lecture

By the end of this lecture, you should be able to:

• describe some of the main effects of space-charge forces on

transverse and longitudinal beam dynamics, including

betatron tune shifts, emittance growth, and longitudinal

instability;

• explain what is meant by the perveance of a beam, and

determine, with reference to the envelope equation,

whether the transport of a beam with given parameters is

dominated by emittance or space-charge effects;

• describe some of the phenomena associated with the

effects of collisions between particles in a bunch, including

intrabeam scattering and the Touschek effect.
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Space-charge forces

Charged particles in accelerators act as sources of

electromagnetic fields.

The electric field E⃗ and magnetic field B⃗ can be calculated

from Maxwell’s equations, with charge density (charge per unit

volume) ρ and current density (charge crossing unit area per

unit time) J⃗:

∇ · E⃗ =
ρ

ε0
, and ∇× B⃗ −

1

c2
∂E⃗

∂t
= µ0J⃗ . (1)

Here, we assume there is a perfect vacuum inside the

accelerator; ε0 and µ0 are (respectively) the vacuum

permittivity and permeability.

The electric and magnetic fields must also satisfy:

∇ · B⃗ = 0, and ∇× E⃗ = −
∂B⃗

∂t
. (2)
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Space-charge forces

The fields generated by a beam affect the motion of particles

within the accelerator through the Lorentz force, F⃗ :

F⃗ = q(E⃗ + v⃗ × B⃗), (3)

where q is the charge on a particle, and v⃗ is the velocity of the

particle.

To understand the impact of space-charge forces, we need to

solve Maxwell’s equations for a given distribution of particles,

taking into account the boundary conditions imposed by the

vacuum chamber, and then apply the Lorentz force to each of

the particles in the beam.

This is a challenging problem – especially if we want a

“self-consistent” solution (i.e. the distribution of particles is

not fixed, but evolves as a result of the space-charge forces).
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Fields around an ultra-relativistic point charge

To start to understand the impact of space-charge forces, it is

helpful to consider first some simple cases.

One of the simplest cases is that of a single particle moving in

a straight line.

Solving Maxwell’s equations shows that for an ultra-relativistic

charge moving in a straight line, the fields become “flattened”

in a plane perpendicular to the direction of motion of the

charge.
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Fields around an ultra-relativistic point charge

For two charges with the same sign

moving parallel to each other:

• the force from the electric field

pushes the particles apart;

• the force from the magnetic field

pulls the particles together.

At ultra-relativistic energies (γ ≫ 1) the forces from the electric

and magnetic fields almost cancel, though there remains some

residual repulsive force.
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Fields around a uniform beam

The simplest “realistic” case in an accelerator is a continuous

beam with uniform charge density within a circular

cross-section.

A charge at radial distance r from the centre of the beam

experiences a net radial force:

Fr =
nqq2

2πε0

r

γ2a2
, (4)

where there are nq particles (with charge q) per unit length,

γ = (1− v2/c2)−
1
2 is the relativistic (Lorentz) factor, and a is

the radius of the beam.
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Particle dynamics in a uniform beam: perveance

The equation of motion in the horizontal transverse (x)

direction for a particle in the beam is:

d2x

ds2
=

K

a2
x, (5)

where s is the distance along the beamline, and K is the

perveance of the beam.

The perveance is defined by:

K =
2I

β3γ3Ic
, (6)

where β = v/c, I is the beam current, and Ic is the critical

current given by:

Ic =
4πε0mc3

q
. (7)

For electrons, Ic is the Alfvén current IA ≈ 17.045 kA.

Collective Effects in Accelerators 11 Part 1: Space Charge and Scattering



Particle dynamics in a uniform beam

Note that the space-charge force varies linearly with transverse

position in the beam: this applies only to the case of a uniform

transverse distribution.

For a uniform transverse distribution, space-charge forces act

like forces from quadrupole magnets, except that space-charge

forces are simultaneously defocusing in x and y.

It follows that important properties, in particular the

conservation of the emittance, apply to beam transport in the

presence of (linear) space-charge forces.
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The envelope equation

Since we know the equation of motion for individual particles,

we can work out the equation of motion for the beam

distribution.

The equation of motion for the rms beam size is known as the

envelope equation:

d2σx

ds2
+ k1σx −

ϵ2x
σ3x

−
K

2(σx + σy)
= 0, (8)

where k1 is the quadrupole focusing strength, σx is the rms

horizontal beam size:

σx =
√
⟨x2⟩, (9)

and the emittance ϵx is given by:

ϵx =
√
⟨x2⟩⟨x′2⟩ − ⟨xx′⟩2. (10)

Similar equations apply for the vertical (y) motion.
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Envelope equation: continuous beam with elliptical symmetry

So far, we have considered only the special case of a beam with

uniform charge density within a circular cross-section.

In this case, the horizontal and vertical rms beam sizes evolve

according to the envelope equations:

d2σx

ds2
+ k1σx −

ϵ2x
σ3x

−
K

2(σx + σy)
= 0, (11)

d2σy

ds2
− k1σy −

ϵ2y

σ3y
−

K

2(σx + σy)
= 0, (12)

where the emittances ϵx and ϵy are constant.

It can be shown that the envelope equations apply to any

continuous beam with elliptical symmetry – although in

general, the emittances are not conserved.
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Envelope equation: continuous beam with elliptical symmetry

Each term in the envelope equation has a clear physical origin:

d2σx

ds2
+ k1σx −

ϵ2x
σ3x

−
K

2(σx + σy)
= 0. (13)

• k1σx represents the quadrupole focusing;

• ϵ2x/σ
3
x represents the evolution of the beam size arising from

the beam emittance (non-zero divergence);

• K/2(σx + σy) represents the defocusing effect of the

space-charge forces.

If the emittance term is much larger than the space-charge

term, then the beam transport is said to be emittance

dominated.

If the space-charge term is much larger than the emittance

term, then the beam transport is said to be space-charge

dominated.
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Example: beam transport with space-charge in a drift space

As an example, we can integrate the envelope equation to

calculate the beam size along a drift length of 1m. We choose

an emittance of 10mmmrad, and set the initial conditions to

minimise the maximum beam size for a given perveance.
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Space-charge tune shifts

The defocusing effects of space-charge forces lead to changes

in the betatron oscillation frequencies.

For a continuous beam with uniform charge density, all

particles experience the same frequency shifts.

For a bunched beam (for example, in a storage ring) the

situation is more complicated: the space-charge forces are

nonlinear, and depend on the longitudinal position of the

particle in the bunch.

Collective Effects in Accelerators 17 Part 1: Space Charge and Scattering



Incoherent space-charge tune shifts

Consider the particles in a bunch in a storage ring. Although
each particle within the bunch experiences a betatron frequency
shift from space-charge forces, if we neglect interactions with
the vacuum chamber then the overall space-charge force on the
bunch is zero.

This kind of tune shift is sometimes called an incoherent tune
shift: it cannot be measured by observing the coherent motion
of a bunch of particles.

For particles in a bunch with non-uniform density, there is a
tune spread representing the range of tune shifts for different
particles. The vertical tune spread can be estimated using the
formula:

∆νy = −
K

4π

∮
βy

σy(σx + σy)
ds, (14)

where K is the peak perveance in the bunch, βy is the vertical
beta function, and the integral is taken over the entire
circumference of the ring.
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Laslett tune shifts

In addition to direct forces between particles in a bunch,

particles experience forces from image charges in the walls of

the vacuum chamber.

The forces from image charges depend on the geometry of the

vacuum chamber, and the position of the bunch within the

chamber.

Tune shifts resulting from image charges are known as Laslett

tune shifts.

In general, there will be coherent Laslett tune shifts as well as

incoherent Laslett tune shifts.
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Incoherent Laslett tune shifts

Consider a beam centred on the mid-plane between infinite,

plane parallel plates.

The overall space-charge

force on the beam, even

including image charges

is zero; however, the

individual particles will

see effects from the

image charges.

The result is an

incoherent tune shift

arising from the image

charges.
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Incoherent Laslett tune shifts

However, if the beam is displaced from the mid-plane, then the

forces from the image charges no longer balance.

The result is that the

image charges cause a

coherent tune shift: the

frequency of the coherent

betatron motion of the

entire bunch is changed

by the forces from the

image charges.
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Longitudinal space-charge effects

In a continuous beam with uniform charge density (within a

given cross-section) the longitudinal fields are zero (by

symmetry).

Longitudinal components of the fields occur when there is

some variation in the density of particles along the beamline.
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Longitudinal space-charge effects

The longitudinal components of the fields are related to the
transverse components through Maxwell’s equations. This
provides a method for calculating the longitudinal fields.

∇× E⃗ = −
∂B⃗

∂t
, and hence

∮
C
E⃗ · dℓ⃗ = −

∂

∂t

∫∫
B⃗ · dA⃗. (15)

In a chamber with perfectly conducting walls, the longitudinal
component of the electric field vanishes at the walls.

Since we know the transverse components of the electric and
magnetic fields around the beam, we can calculate the
longitudinal field along any line parallel to the axis of the beam.
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Longitudinal space-charge field

The longitudinal electric field is conveniently expressed in terms

of the Fourier components ñq(ω) of the particle density.

The particle density nq(s, t) is related to the components ñq(ω):

nq(s, t) =
∫ ∞

−∞
ñq(ω)e

i(ks−ωt)dω where
ω

k
= βc. (16)

The longitudinal electric field in a chamber with circular

cross-section of radius b is:

Es(r = 0, s, t) = −i
qg

4πε0βγ2c

∫ ∞

−∞
ωñq(ω)e

i(ks−ωt)dω, (17)

where the geometry factor g is given by:

g = 1+ 2 ln
(
b

a

)
. (18)
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Longitudinal space-charge: energy modulation

The main effect of the longitudinal space-charge fields is to

change the energy of the particles.

The change in energy of a particle over a section of beamline

from s1 to s2 is found by integrating the force on the particle

over that distance:

∆δ(z) =
q

E0

∫ s2

s1
Es

(
s, t =

s− z

βc

)
ds, (19)

where E0 is the reference energy, and the energy deviation δ of

a particle with energy E is given by:

δ =
E − E0

E0
. (20)
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Longitudinal space-charge: energy modulation

Combining the expressions for the longitudinal electric field and

the energy change, we find that in a storage ring, the energy

change over one revolution can be written:

∆δ(z) =
q

E0

∫ ∞

−∞
Ĩ(ω)Z∥sc(ω)e

iωz/c dω, (21)

where Ĩ(ω) is the Fourier spectrum of the beam current

observed at a given location in the ring, and Z∥sc(ω) is the

longitudinal space-charge impedance given by:

Z∥sc(ω) = i
gZ0

2βγ2
ω

ω0
. (22)

g is the geometry factor (given by (18) for a beam pipe with

circular cross-section), and ω0 is the ring revolution frequency.
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Longitudinal space-charge impedance

In a synchrotron storage ring, the longitudinal space-charge

impedance leads to a change in the synchrotron frequency and

a change in the equilibrium longitudinal distribution.
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Scattering effects

In our discussion of space-charge, we considered the impact of

fields calculated with the approximation of a smooth charge

distribution.

In reality, bunches consist of large numberse of “point-like”

particles.

The fields close to a single particle can be very much larger

than the fields calculated in the approximation of a smooth

charge distribution.

Occasionally, two particles within a bunch can approach each

other closely enough for the local peaks in the field strengths

to have observable effects.
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Touschek effect

A “collision” between two electrons

(or positrons) is described by Møller

scattering.

In the rest frame of a bunch (of

electrons), the differential

cross-section for Møller scattering

gives the distribution of the deflection

angle.

When transformed into the lab frame,

even a small deflection angle can lead

to a large change in energy deviation.

If the energy deviation of a particle is outside the energy

acceptance of the storage ring, the particle will be lost from

the beam: this is the Touschek effect.
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Touschek effect

The rate at which particles are lost from a beam can be

calculated from the density of particles in the beam and the

energy acceptance of the storage ring.

In the simplest case (neglecting dispersion and coupling, and

assuming non-relativistic motion in the bunch rest frame) the

loss rate from the Touschek effect is given by:

dNb

dt
= −

N2
b cr

2
0

8πγ2σxσyσz

(
β

δmax

)3
D(ξ), (23)

where Nb is the bunch population, r0 is the classical radius of

the electron, β = v/c, δmax is the energy acceptance of the

storage ring, and:

ξ =
δ2maxβx

β2γ2εx
, D(ξ) = ξ

3
2

∫ ∞

ξ

e−u

u2

(
u

ξ
− 1−

1

2
ln

(
u

ξ

))
du. (24)
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Touschek effect
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Touschek effect

The loss rate depends on the square of the number of particles
in the bunch.

Therefore, the bunch population does not (strictly speaking)
decay exponentially; nevertheless, we define the Touschek
lifetime:

1

τT
= −

1

Nb

dNb

dt
=

Nbcr
2
0

8πγ2σxσyσz

(
β

δmax

)3
D(ξ). (25)

Other effects (in particular, gas scattering) can lead to the loss
of particles from a beam in a storage ring.

But in low-emittance electron rings (e.g. in third-generation
synchrotron light sources) the Touschek effect is usually the
dominant lifetime limitation.

The Touschek lifetime has a strong dependence on the energy
acceptance: usually the goal is to achieve δmax > 4% (roughly).
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Intrabeam scattering

Even if a Møller scattering event does not result in the loss of
the particles involved, there can be a transfer of momentum
from the transverse to the direction to the longitudinal.

If the scattering takes place at a location with non-zero
dispersion, then the momentum transfer can lead to an
increase in the transverse emittance.

Intrabeam scattering (IBS) leads to emittance increase by a
mechanism very similar to quantum excitation by synchrotron
radiation; but IBS occurs wherever the dispersion is non-zero,
not just in dipoles.
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Intrabeam scattering

There are two widely-used formalisms for the analysis of

intrabeam scattering:

• Piwinski (Proc. 9th Int. Conf. High Energy Accel., 1974);

• Bjorken and Mtingwa (Part. Accel. 13, 115–143, 1983).

Both formalisms lead to expressions for the growth rates of the

transvserse and longitudinal emittances.

The full expressions are rather complicated; but simplified

formulae (e.g. due to Bane) can be derived using various

approximations.
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Intrabeam scattering

In an electron (or positron) storage ring, the IBS growth rates

are usually slow compared to the emittance damping rates from

synchrotron radiation.

Increases in equilibrium emittance from IBS are usually only

observable in proton storage rings.

IBS effects can be observed in electron or positron rings with:

• high bunch population (> 109 particles);

• low or moderate energy (roughly 1GeV orless);

• short bunch lengths and very low emittance (vertical

emittance less than a few pm).
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Observations of IBS in the KEK-ATF

The energy spread damps more rapidly than the transverse

emittances after beam is injected into the ATF storage ring; as

the transverse emittances approach small (equilibrium) values,

the energy spread increases as a result of IBS.

K.L.F. Bane et al, “Intrabeam scattering analysis of measurements at KEK’s

Accelerator Test Facility damping ring,” PRST-AB 5, 084403 (2002).
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Summary: space-charge

Space-charge forces have transverse defocusing effects.

The size of the space-charge forces can be characterised by the

perveance (a function of the beam current and energy).

The evolution of the transverse beam size, including focusing,

emittance and space-charge, is described by the envelope

equations.

For a uniform transverse distribution, the space-charge forces

are linear, and the emittances are conserved.

The Laslett tune shifts describe the effects of image charges in

the walls of the vacuum chamber.

Longitudinal variations in particle density lead to changes in

particle energy, which can be described by an impedance.
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Summary: scattering

Collisions between particles within a bunch lead to observable

(scattering) effects.

The rate of particle collisions depends on the particle density

and the (Møller) cross-section.

Collisions can lead to a transfer of momentum from the

transverse motion to the longitudinal motion.

If the change in momentum of a particle is large enough that

the momentum is outside the momentum acceptance of the

storage ring, the particle will be lost from the beam: this is the

Touschek effect.

For smaller changes in momentum, there can be an increase in

the beam emittance: this is intrabeam scattering.
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