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Session 6
Part 1: 
Sources of gas in vacuum system



Aims of Part 1: 
Vacuum Requirements of Accelerators
 To give a brief overview of sources of gas in vacuum systems
 To understand which materials can be used for particle 

accelerators 
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Some Suitable Materials
Vessels
 Metals

 Stainless Steel – AISI 304, L, LN; 316, L, LN
 Aluminium – 4043 (5% Si) 

5052 (2.5% Mg, 0.25% Cr)
6061(0.25% Cu, 0.6% Si; 1% Mg, 0.2% Cr)
6063 (0.5% Si, 0.1% Cu, Mn, Zn, Ti, Cr, 

0.8% Mg)
 Copper

especially high strength with e.g. 2% Be 
 Titanium

 Ceramics
 Fully vitrified electrical Porclean and vitrified 

Alumina, Beryllia
 Glass
 GRP Epoxy (low vacuum machines)

Internal
 All materials shown for vessels
 All refractory metals (extraordinarily 

resistant to heat and wear)
 OFHC and OFS Copper
 Copper and aluminium bronzes
 Glidcop®
 Gold, many alloys, 
 Silica (SiO2) (ex.: quartz glass)
 Glass  (Borosilicate Glass ,a.k.a. Pyrex) 
 etc.
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Materials that shouldn’t be used in vacuum
 This list should include just about everything not listed above, the general 

rule being if in doubt don't use it. Some common materials (nasties) that 
are not suitable for vacuum:
 Brass, high sulphur and phosphorus containing alloys.
 Cadmium Plating, often used for small screws. 
 Small screws used in the chamber can be nickel plated brass or plain copper, and 

should be drilled or relieved (i.e. file off one side of the threaded area.) to prevent virtual 
leaks.

 PVC insulated wire (high outgassing rate) 
 and should be replaced with Teflon insulated wire.

 Paint Yellow Transformer 
 can be replaced with ordinary (plumbers) Teflon tape.
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Properties which influence on vacuum
Outgassing
 Thermal induced desorption

Desorption
 Photon stimulated desorption (PSD)
 Electron stimulated desorption (ESD)
 Ion stimulated desorption (ISD)
 Other particle stimulated (or induced) desorption

Photon and Secondary Electron Yield (PEY and SEY)
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Schematic layout of a typical vacuum system
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Mechanisms Contributing to Outgassing
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Sources of Gas in a Vacuum System
 Gas injection ── It is usually well controlled 
 Residual gas from atmosphere ── It is not a source of gas for the most of UHV systems 
 Leaks (from atmosphere or trapped volumes) ── there must be no leaks
 Thermal  outgassing

 Vacuum chamber
 Components and samples inside the vacuum chamber

 Equilibrium vapour pressure
 H2O and Hg at RT, 
 H2 at LHe, CO2 at LN2, etc.

 Products or by-product of a processing in vacuum     
 Induced gas desorption

 Photon, electron and ion simulated desorption
 Cryogenic vacuum chamber: recycling and cracking

 Back streaming from the pump
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Sources of Gas in a Vacuum System: 
Vacuum Leaks

 The aim is building a vacuum-tight vessel, i.e. no gas from atmosphere 
should be able to find its way into the vessel, there must be no leaks to 
atmosphere.
 To minimise the possible leaks it is necessary:

 to engineer an appropriate design (both mechanical and vacuum)
 to use vacuum-tight components (checked by vacuum support)
 to perform quality welding and careful assembly of components
 to use tested types of valves and flanges, only new gaskets
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After the production of the vacuum vessel, assembly of 
components and installation, a leak detection is needed to locate 
possible leaks and to guarantee the required pressure will be 
reached.



Sources of Gas in a Vacuum System: 
Vapours

In the condensed state of a substance, either solid or liquid, the bonds that hold its atoms (or 
molecules) together are opposed by thermal agitation, whose measure is temperature.

Bonding  versus temperature
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How does vapour pressure depend on temperature?
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 …… strongly, it is a thermally activated process  – so  the higher the temperature, 
the greater the thermal agitation that causes the escape of molecules from the 
surface. 

 Water boils at T = 100°C at P = 1013 mbar.
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Distinction between gas and vapour
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Critical temperatures:   Tc(water) =  647 K  (374 °C),  
Tc(nitrogen) 126 K (-147 °C)

T < Tc , vapour

p

p

V

A
BC

D

A,

B, saturated
vapour

C, all liquid

T < TC

TC

T >Tc , gas

by the critical temperature, TC  …

T > TC

unsaturated
vapour

Definition (Oxford Dictionaries):
• Gas is a gaseous substance that cannot be liquefied by the application of pressure alone.
• A gaseous substance that is below its critical temperature, and can therefore be liquefied by pressure alone.



Sources of Gas in a Vacuum System:
Equilibrium Vapour Pressure without pumping. 
When liquid, condensed gas or a very porous material is present in a vacuum 
chamber the pressure is limited by the equilibrium vapour pressure:

There are two gas flows: 
from and to liquid surface  

4 4
eq

in out eq
B

P vvq q n
k T

= = =

Material Temperature, T
[K]

Equilibrium pressure, Peq
[mbar]

Mercury 293 2⋅10-3

Pump oil 293 10-6 to 10-8

Water 293 20

H2 4.2 8⋅10-7

CO2 77.8 2⋅10-8

surface

liquid

Vapour at P = Peq

qout

qin
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Sources of Gas in a Vacuum System:
Equilibrium Vapour Pressure with pumping. 
When liquid, condensed gas or a very porous material is present in a vacuum 
chamber the pressure is limited by the equilibrium vapour pressure:

That means that there are two gas flow from and to liquid surface:  

; ;
4 4 4 4

eq
out eq in

B B

P vv v Pvq n q n
k T k T

= = = = Peq and neq are equilibrium pressure and gas density; 
P and n are the actual pressure and gas density in 
vacuum chamber

Material Temperature, T
[K]

Equilibrium pressure, Peq
[mbar]

Mercury 293 2⋅10-3

Pump oil 293 10-6 to 10-8

Water 293 20

H2 4.2 8⋅10-7

CO2 77.8 2⋅10-8 surface

liquid

Vapour at P < Peq

qout qin
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Vapour 
Pressure
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Sources of Gas in a Vacuum System:
Equilibrium Vapour Pressure

When liquid, condensed gas or a very porous material is present 
in a vacuum chamber the pressure is limited by the equilibrium 
vapour pressure
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Material Temperature, K Equilibrium pressure, 
mbar

Mercury 293 2⋅10-3

Pump oil 293 10-6 to 10-8

Water 293 20

H2 4.2 8⋅10-7

CO2 77.8 2⋅10-8



Gas composition in the atmosphere and in vacuum

 Atmospheric air is a mixture of gases with over 99% of nitrogen and
oxygen, while the rest of gas in UHV consist mainly of hydrogen.

 The gas composition is varied depending on many factors: choice of material,
cleaning, baking, pumping system design, type of pumps, temperature,
photon, electron or ion bombardment of the surface and many others.
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Thermal Desorption 
Thermal desorption (or thermal outgassing) means:
 Molecules adsorbed on the surface (initially or after the air 

venting) and desorbing when vacuum chamber is pumped
 Molecules diffusing through the bulk material of the vacuum 

chamber, entering the surface, (recombining) and desorbing 
from it

Outgassing rate depends on many factors: choice of material, 
cleaning procedure, baking, pumping time, etc... 

Ex.: η316 LN ⇒ (10-15 – 10-8) mbar⋅l/(s⋅cm2)

⇒ Input data for a gas dynamic  model are very approximate

⇒ UNFORTUNATELY, water molecules adsorbed in large amounts (from ambient 
surroundings when surfaces are at atmospheric pressure), and with a bond 
strength that causes its release at a problematic rate:

outgassing rate,  η ~ 10-7 mbar⋅l/(s⋅cm2) (after 1 hour pumping)
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Choice of Material for UHV System
 The outgassing rates may vary in order of magnitudes depending on factors: choice of material, 

cleaning procedure, history of material, pumping time, etc... 
 Not all materials are compatible with UHV and XHV system!
 The example of the outgassing rates after one hour pumping:
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Material ηt [mbar⋅l/(s⋅cm2)]

Aluminium (fresh ) 9⋅10-9

Aluminium (20h at 150°C) 5⋅10-13

Cupper (24h at 150°C) 6⋅10-12

Stainless steel (304) 2⋅10-8

Stainless steel (304, electropolished) 6⋅10-9

Stainless steel (304, mechanically polished) 2⋅10-9

Stainless steel (304, electropolished, 30h at 250°C ) 4⋅10-12

Perbunan 5⋅10-6

Pyrex 1⋅10-8

Teflon 8⋅10-8

Viton A (fresh) 2⋅10-6



What can be achieved for stainless steel?

 Experience shows that an outgassing rate of the order of 
10-11 mbar⋅l/(s⋅cm2) can be obtained after bakeout to 250 °C

 An outgassing rate of  10-13 mbar⋅l/(s⋅cm2) is achievable 
with conventional techniques

 Rates lower than 10-14 mbar⋅l/(s⋅cm2) are achievable with 
care, particularly in thin walled vessels, or on polished and 
vacuum fired surfaces
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Permeability
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Strategies for reducing of outgassing
 Permeation:       

 wall thickness
 barrier layer on surface 

 coating, oxide, nitride, etc. 
 internal or external

 preferred orientation of grains 
 should be parallel to the surface (rolled sheets)
 forged flanges (to minimise normal to surface)

 Bulk diffusion :    
 reduce dissolved hydrogen 

 vacuum melt, vacuum firing, air bake, induce 
trapping states (bulk or surface)

 grain boundary density
 Recombination : 

 reduce surface mobility by introducing surface 
trapping sites

 Desorption:        
 reduce surface concentration 

 surface cleaning and vacuum bakeout
 reduce physical surface area 

 by design and by surface polishing
 Adsorption:        

 reduce exposure to air and sorbing gases
 fill surface binding sites 

 surface polishing, air-bake

References:
 R. Calder and G. Levin. Brit. J. Appl. Phys. 18 (1967) 1459.
 G. Chuste, CERN, unpublished results
 M Suemitsu et al. Vacuum 44 (1993), 425.
 DG Bills. J. Vac. Sci. Technol. 6 (1969), 166
 M. Bernardini et al. J. Vac. Sci. Technol. A16 (1988), 188.
 L. Westerberg et al. Vacuum 48 (1997), 771. 
 JRJ Bennett and RJ Elsey. Vacuum 43 (1992), 35
 Y. Tito Sasaki. J. Vac. Sci. Technol. A25 (2007), 1309.
 C. Benvenuti. Proc. of PAC’01, p.602.
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Pumpdown time
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Photon stimulated desorption (PSD)

Vacuum Science and Technology in Accelerators Cockcroft Institute Lectures - 2023 26O.B. Malyshev



Photon stimulated desorption
Photon stimulated desorption (PSD) is one of the most important sources of gas in the 
presence of synchrotron radiation (SR) or any photons with E > 5-10 eV. 

PSD can be considered as a two-step process: 

• first, photons with energy >5-10 eV cause the photoelectron emission, 

• then the photoelectron stimulate gas desorption. 

O.B. Malyshev

Gas molecules may desorb from a surface when and where photoelectrons
leave and arrive at a surface
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PSD yields

PSD yields are defined as a number of gas molecules desorbed from 
the surface per incident photon, ηγ [molecules/photon]:

[ ] [ ]

3

,
B

Q Pamolecules
photon k T K photon

s
s

m
γη

 ⋅ 
=  Γ 

 
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What PSD depend on?

Similarly to thermal desorption, 

PSD depends on:

• Choice of material 

• Cleaning procedure

• History of material

• Bakeout and vacuum firing

• Pumping time 

Additionally it depends on

• Energy of photons

• Photon flux

• Integral photon dose

• Temperature

Vacuum Science and Technology in Accelerators Cockcroft Institute Lectures - 2023 29O.B. Malyshev



Photodesorption yields, η (molecules/photon), as a function of accumulated 
photon dose, D, for different materials measured up to certain doses, these results 
are extrapolated for use in the design of new machines 

PSD yield for CO for prebaked and in-situ baked stainless steel vacuum chambers. 
Yields for doses higher then 1023 photons/m (1 to 10 Amp⋅hrs for diamond) are extrapolations.

165.0,0
0 <<






= αηη

α

D
D

Photodesorption yield as function of 
accumulated photon dose can be 
described as:

PSD as a function of dose

Vacuum Science and Technology in Accelerators Cockcroft Institute Lectures - 2023 30O.B. Malyshev



PSD as a function of dose

aluminium vacuum chamber 
(Vacuum 33, 397 (1983))

The PSD yield η for various gas species as a function of the accumulated photon dose at εc = 3.75 keV at DCI

stainless steel vacuum chamber
(Vacuum 60, 113 (2001)).
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PSD yields from different materials 
as a function of photon dose

Photodesorption yields, η(molecules/photon), as a function of accumulated photon 
dose for different materials for vacuum chamber (A. Mathewson, AIP Conf. Proc. 236 (1), 313 (1991))
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PSD as a function of amount of desorbed gas

The same data can be plotted differently:
Stainless steel                           Aluminium             Copper
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PSD as a function of critical energy of SR

J. Gomez-Goni, O. Gröbner, and A. G. Mathewson, J. Vac. Sci. 
Technol. A12, 1714, (1994)

 εc = 10-1000 eV εc = 0.1-1.4 MeV
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PSD as a function of critical energy of SR

J. Vac. Sci. Technol. A 25(2007): 791-801

Vacuum Science and Technology in Accelerators Cockcroft Institute Lectures - 2023 35O.B. Malyshev



Reducing PSD by  bakeout
Bakeout Impact Comment

In-situ at 150 °C for 24 hrs reduction of ηH2O by 5-10 times; reduction of 

initial PSD yields for other species by 2-4 times

Reducing bakeout temperature to 120 °C 

requires increasing of bakeout duration to a 

few days.

In-situ at 300-350 °C for 24 hrs: reduction of initial ηH2 by 10-20 times, for other 

species by 7-15 times

-

Ex-situ at 250-300 °C for 24 hrs reduction of initial ηH2 by 5-10 times, for other 

species by 4-8 times

keep in vacuum; minimise vent to air during 

installation; purge with dry air, N2 or noble 

gases 

Vacuum firing at 950 °C for 1-2 hrs at P 

< 10-5 mbar

hydrogen depletion in the bulk of vacuum 

chamber material

Keep in vacuum or fill with N2 or noble gas.

No in-situ bakeout after vacuum firing reduction of ηH2 by ~1.5-2 times

In-situ bakeout after vacuum firing reduction of ηH2 by ~20-50 times
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Effect of incident angle on PSD

PSD and PEY as a function of 
absorber angle (90°−Θ) normalised 
to response at normal incidence for 
copper surface
[B. A. Trickett, D. Schmied and E. M. Williams. 
Hard synchrotron radiation and gas desorption 
processes at a copper absorber J. Vac. Sci. 
Technol. A10 (1992) 217] 
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Electron stimulated desorption (ESD)
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ESD
Electron stimulated desorption (ESD) could be an important sources of gas in case of 
electron beam bombardment, beam induced electron multipacting, or as a part of the PSD 
process  in the presence of SR. 

Gas molecules may desorb from a surface when and where electrons arrive at a surface

H2

H2O

CO2

CH4

CO

e-

e- e-

e-

e-

e-

e-
e-

e-

e- e- e-e-

e-

e-

ESD could also be an important sources of gas in case of measurements with an electron 
beam, electron beam treatment, electron beam welding, and other processes with electrons.

Vacuum Science and Technology in Accelerators Cockcroft Institute Lectures - 2023 39O.B. Malyshev



ESD yields
ESD yields are defined as a number of gas molecules desorbed from the 
surface per incident electron, ηe [molecules/e-]:

[ ]
[ ] [ ]
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,emolecules
e

electrons B

Q Pa q CNmolecules
e N k T K I A

m s
η −

 ⋅  = =


 


where 
• Q is a flux of molecules desorbed due to electron bombardment, 
• I is the electron current,
• qe is the elementary charge
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What ESD depend on?

Similarly to PSD and thermal 

desorption, ESD depends on:

• Choice of material 

• Cleaning procedure

• History of material

• Bakeout and vacuum firing

• Pumping time 

Additionally it depends on

• Energy of electrons  impinging the 

surface

• Electron flux to the surface

• Integral electron dose

• Temperature

Vacuum Science and Technology in Accelerators Cockcroft Institute Lectures - 2023 41O.B. Malyshev



ESD yields of 316 LN stainless steel baked to 250 ºC for 24 hours as a function of electron 
dose at electron energy Ee = 500 eV.

O.B. Malyshev and C. Naran. Vacuum 86 (2012), 1363-1366.

0
0

D
D

α

η η  =  
 

ESD yield as function of 
accumulated photon dose 
can be described as:

ESD as a function of dose

the exponent α lies between 
0.5 ≤ a ≤ 1
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ESD from different materials
ESD yields of unbaked OFHC copper after 24-hour 
pumping as a function of electron dose at Ee = 300 eV ESD yields of aluminium alloy baked to 220 ºC for 

24 hours as a function of electron dose at 
electron energy Ee = 500 eV 

F. Billard et al, Some Results on the Electron Induced Desorption Yield of OFHC 
Copper. Vacuum Technical Note 00-32, December 2000, CERN, Geneva.

O.B. Malyshev et al, Vacuum 85 (2011) 1063-1066.
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ESD as a function of electron energy
Unbaked OFHC copper at the dose D = 1.4 × 1014 e–/cm2

F. Billard et al, Vacuum Technical Note 00-32, December 2000, CERN, Geneva.
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Stainless steel baked 
at 250 °C for 24 h 

at the dose D = 7 ×
1021 e–/cm2

Aluminium sample baked at 
220 °C for 24 h at the dose 
D = 1.3 × 1022 e–/cm2

J. Vac. Sci. Technol. A12 (1994), 
1714.

O.B. Malyshev et al, J. Vac. Sci. 
Technol. A 28 (2010) 1215. 
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Ion stimulated desorption (ISD)
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ISD
Ion stimulated desorption (ISD) can be a significant gas source in 
a vacuum system where the ion beam bombards the surface. There 
is very little data, most work has been done at CERN. 
Similarly to thermal desorption, PSD and ESD, the ISD depends on:
choice of material, cleaning procedure, history of material and 
pumping time.

It is also depends on:
• Mass, charge and energy of ions impacting the surface
• Ion flux to the surface
• Integral ion dose
• Temperature

O.B. Malyshev CAS on Vacuum for Particle Accelerators 2017
6-16 June, 2017, Glumslöv, Sweden
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ISD yields
ISD yields, defined as a number of gas molecules desorbed from the surface per 
incident ion, χ (molecules/ion), :
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where 
• Q is a flux of molecules desorbed due to ion bombardment, 
• I is the ion current,
• qe is the elementary charge and 
• nq is the ion charge number
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ISD yields as a function of ion energy

A.G. Mathewson. Ion induced 
desorption coefficients for titanium 
alloy, pure aluminum and stainless 
steel. CERN-ISR-VA/76-5 (1976).
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The ISD yields as a function of accumulated ion dose from (a) as-received and 
(b) baked aluminium and copper samples bombarded with argon ions at 5 keV.

M.P. Lozano. Ion-induced desorption yield measurements from copper and aluminium. 
Vacuum 67 (2002) 339.

ISD yield as function of 
accumulated ion dose can 
be described as:

ISD as a function of dose

the exponent α lies 

between 0.3 ≤ α ≤ 0.5 for as-
received samples and 

between 0 ≤ α ≤ 1/3 for baked 
samples

( ) ( )
*

* ;i i
DD D
D

α

χ χ
 

=  
 
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ISD as a function of ion mass

N. Hilleret. Influence de la nature des ions incidents sur les taux de desorption par bombardement ionique de 
molécules adsorbées sur une surface d’acier inoxydable. CERN-ISR-VA/78-10 (1978).

ISD yield from (a) unbaked and (b) baked stainless steel sample as a function of incident ion mass
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Two concepts of the ideal vacuum chamber

Traditional:
 surface which outgasses as little as possible 

(‘nil’ ideally)
 surface which does not pump otherwise that 

surface is contaminated over time 
Results in
 Surface cleaning, conditioning, coatings 
 Vacuum firing, ex-situ baling
 Baking in-situ to up to 300°C
 Separate pumps

‘New’ (C. Benvenuti, CERN, ~1998):
 surface which outgasses as little as possible 

(‘nil’ ideally)
 a surface which does pump, however, will not 

be contaminated due to a very low outgassing 
rate  

Results in
 NEG coated surface
 There should be no un-coated parts
 Activating (baking) in-situ at 150-180°C
 Small pumps for CxHy and noble gases
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SEM images of films (film morphology)
columnar dense

O.B. Malyshev, R. Valizadeh, J.S. Colligon et al. J. Vac. Sci. Technol. A 27 (2009), p. 521.
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What NEG coating does
1) Reduces gas desorption:
 A pure metal (Ti, Zr, V, Hf, etc.) film ~1-µm thick

without  contaminants.
 A barrier for molecules from the bulk of vacuum 

chamber.

2) Increases distributed pumping speed, S:
 A sorbing surface on whole vacuum chamber 

surface
S = α⋅A⋅v/4;

where α – sticking probability, 
A – surface area, 
v – mean molecular velocity
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Vacuum      NEG     Bulk
Coating



NEG coated vacuum chamber under SR

Dynamic pressure rise for the Stainless Steel (baked at 300°C for 24 hrs)
and TiZrV coated vacuum chambers (activated at 190°C for 24 hrs)
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ESD yield from NEG coated samples
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316LN
Tb=250°C



Session 6
Part 2: 
Basic vacuum design of accelerators. 
Calculations to support the design



Aims of Part 2:
Basic Principles of Vacuum
 To use some of the concepts and information from earlier 

lectures as an introduction to the process of delivering a 
working accelerator from the vacuum system viewpoint
 To present some examples of basic vacuum calculations
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Vacuum required in the particle accelerators
 High energy particles collide with residual gas molecules that results in:

• loss of particles, 
• loss of the beam quality. 

 Examples of vacuum specification for a high energy particle accelerator:
• 100 h vacuum life time at I = 560 mA after 100 Ah conditioning (for DLS);
• P(N2 eqv) = 10-8 mbar after bakeout and a week of pumping (for a buster);
• n(H2 eqv) = 1015 m-3 after 2 years conditioning (for the LHC);  etc...
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Preliminary questions
What sort of machine is it?
 Experimental (“Toy”) 
 ex.: VELA, CLARA

 Data collector 
 ex.: colliders (LHC, RIHC, DAΦNE)

 User Facility 
 ex.: SR sources, medical and industrial accelerators

 Implications
 Reliability
 Serviceability
 Access
 Physical
 Duty cycle
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Vacuum specifications are affected by
 Lattice design

 Location and required space for key 
components:
 Magnets, collimators, 
 Detectors,
 SR absorbers
 Beamlines 

 Choice of materials and coatings
 Electric and magnetic properties
 Surface resistance, 
 Surface roughness, 
 Reflectance or transparency

 Beam size (close orbit) => 
 Apertures (lower limit)

 Magnet design => 
 Apertures (upper limit)

 Preliminary mechanical layout

 Specific components
 E-gun, 
 gas target, 
 detectors, 
 Wigglers and undulators,
 SR or particle beamlines
 etc.

 Specific problems
 Electron cloud; ion instability, ion 

induced pressure instability
 High power loss, high radiation 

damage, etc.
 Health and safety
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Vacuum design
 Defining all sources of residual gas in vacuum chamber 

 with and without a beam

 Calculating required pumping 
 type of pumps, locations

 Defining the means of pressure measurements 
 their types and locations 

 Defining the necessary procedures for 
 material selection, 
 cleaning, 
 treatments (polishing, coating, firing baking, etc.)

 Providing the results of modelling for the gas density (or pressure) profile 
 along the beam path and at any specific location  
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Initial Rough Design
 Guess (or estimate) internal surface area 

 A [m2]
 Assume an achievable outgassing rate 

 qth [mbar⋅l/(s⋅m2)]
 Determine total required pumping speed, S [l/s] to reach the 

base pressure, Pb

 Since conductance was not considered here, this a lower limit 
estimate of  a total required pumping speed.
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Initial Rough Design
 Work out the significance of any stimulated desorption

 Location
 Direct
 Scattered

 Intensity
 Desorption coefficients

 This will result in a dynamic gas load, Qd (integrated along the machine)
 If Qd << Qth, it may be ignored and dynamic pressure Pd ~ Pb.
 Otherwise, the minimum (but not necessary sufficient!) total required 

pumping speed, Sd, calculated from
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Initial Rough Design
 Determine type of pumps to use

 Sputter Ion pump (SIP)
 Lumped
 Distributed

 TSP
 NEG

 Lumped
 Distributed
 Coatings

 Turbo-molecular pump (TMP)
 Cryo-pumping 

 Lumped
 Distributed
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Initial Rough Design
 From a knowledge of what is available, with an eye on economics, and a dash 

of know-how, work out how many pumps of each type will be required overall.
 Then, using the preliminary mechanical layout, draw up a rough vacuum design 

layout.
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Towards the final design
Using the preliminary layout, carry 

out a full pressure distribution 
calculation. 
 This will use a more detailed mechanical 

layout which takes into account all the 
vacuum conductances which the 
preliminary layout has ignored.

Refine the design (position, size and 
type of pump) to achieve the basic 
specification.
Overlay the vacuum diagnostics 

needed to obtain the required 
information.
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Add in valves and other 
necessary bits and pieces, such 
as roughing pump positions.
Vacuum instrumentation 

(pumps, valves and gauges 
require space along the beam 
chamber. 
 This all may well involve multiple 

re-iteration of the mechanical 
design
 Changes in the lattice design may 

require reconsidering both vacuum 
and mechanical design



Towards the final design

 If stimulated desorption is important, then calculate the 
beam conditioning behaviour of the machine.
Determine the processing and conditioning required to 

achieve the necessary values of outgassing and 
desorption.
Polishing
Coating
Cleaning and passivation processes
Bakeout, pre-installation and in situ
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SR from a dipole magnet
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=> This is for an ideal orbit and is very sensitive to the real beam position   



Example: photon stimulated desorption (PSD)
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PSD yields, η (molecules/photon), as a function of accumulated photon 
dose, D, for different materials measured up to certain doses, these results 
are extrapolated for use in the design of new machines 

PSD yield at room temperature as 
function of accumulated photon dose 
can be described as:

165.0,0
0 <<






= αηη

α

D
D

PSD yield for CO for prebaked and in-situ baked stainless steel vacuum chambers. 
Yields for doses higher then 1023 photons/m (1 to 10 Amp⋅hrs for Diamond LS) are extrapolations.

=> Input data for a gas dynamic model are very approximate



PSD yield and flux as a function of 
distance from a dipole magnet
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=> These data for each gas can be used in the gas dynamics model. 
=> Uncertainty in desorption flux is less than in photon flux and desorption yield



Models used in the molecular 
gas flow regime 

Analytical 1D diffusion model (Knudsen-Clausing)
Monte-Carlo simulations (2D and 3D)
Method of angular coefficient (2D and 3D)
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Diffusion model
Diffusion model is analytical one-dimensional approach
 It uses global and averaged parameters: pressure, pumping 

speed, uniform molecular velocity speed, etc.
 In many cases accuracy is within 0.1 to 10%
 In some cases (ex.: vacuum chamber with sorbing walls, 

molecular beaming effect) the error  may be times or even 
orders of magnitude
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A model of dynamic desorption processes 
in a beam vacuum chamber (1)

The equations of gas dynamic balance inside a vacuum chamber:
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2

2

dz
nducnq

dt
dnV +−=

where z is the longitudinal axis of the vacuum chamber;
n is the gas volume density; V is the vacuum chamber volume;
q is the gas desorption flux; c is the distributed pumping speed

Gas desorption q consists of two main sources: thermal and photon stimulated desorption:

Γ+= γηη Fq t

where
ηt is the thermal desorption yield, F is the vacuum chamber surface area,
ηγ is the photon stimulated desorption yield, Γ is the synchrotron radiation photon flux



A model of dynamic desorption processes 
in a beam vacuum chamber (2)

In the quasi-equilibrium state when the condition is satisfied  then:
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This second order differential equation for the function n(z) has two solutions:

where the constants C1 and C2 depend on the boundary conditions.
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A model of dynamic desorption processes 
in a beam vacuum chamber (3)
All vacuum chamber along the beam can be fragmented on N elements with c = 0 
and c > 0. 

Every i-th element lying between longitudinal co-ordinates zi-1 and zi will 
be described by above equations with two unknowns C1i and C2i. The boundary 
conditions are

and
A system of N–2 equations with 2N–2 unknowns which can be easily solved. 
Then the pressure along the vacuum chamber can be described analytically:
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Pressure profile along the arc after 100 A⋅h beam conditioning
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Average pressure

without a beam:  

<Pt> = 1⋅10-9 mbar

due to SR photons only:  

<Pγ> =1⋅10-9 mbar

Sum (i.e. with a beam):

<Pdin> = <Pt> + <Pγ >= = 2⋅10-9 mbar



Pressure profile along the front ends after 30 A⋅h beam conditioning
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Analytical solution allows 
simple and quick analysis of 
various operation scenarios for 
accelerator vacuum system: 

• moving absorbers
• faulty pumps,
• changing outgassing rates
• closing valves
• etc.



Diffusion model
Advantages of this method
 Easily variable parameters qi, ui and ci
 Possibility in include functional description of each parameter
 Possibility to compare instantly various options of design
 It is good for initial optimisation of vacuum system

 Locations of pumps and their pumping speed
 Modelling the beam conditioning 

Disadvantages of this method
 Sharp change in vacuum chamber shape is not included
 Difficulty of calculating ui for non-standard shapes of beam vacuum 

chamber
 Difficulty of calculating ci  for complicated shapes of pumping ports
 Not accurate if molecular beaming is strong
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Test Particles Monte-Carlo method (TPMC)
 3D model
Mechanical analogy to particle 

movement in free molecular flow 
regime
Random statistical generation of 

initial position, velocity direction, 
reflection from walls, sorption 
probability. 
Accuracy is proportional to 

number of generated particles

Input parameters:
 gas load q 
 (desorbing surfaces and angular 

distribution),
 pumping speed S 
 (pumping surfaces sticking 

probability or capture coefficient) 
 geometry of vacuum system.
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Relations between TPMC parameters and measured values
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Measured parameter Symbol and 
dimensions Model parameter Symbol Relation

Gas flux Qn [molecules/s]
Qp [Pa⋅m3/s] A number of generated molecules N See eq. below

Gas density and 
pressure

n [molecules/m3]
P [Pa] A number if hits to the facet i Mhiti See eq. below

Pumping speed S [m3/s] Sticking probability α

Ideal pumping speed Sideal [m3/s] = A v/4 Maximum sticking probability α = 1

Pumped gas flow Qpump [molecules/s] A number particles pumped at the facet i Mpumpi

Vacuum conductance U [m3/s]= w A v/4 Transmission probability of tube w
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Modelling a DLS pumping port with TPMC
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A drawing of a quadrupole with a 
beam vacuum chamber and a pumping 
port A transmission probability of 

the pumping port were 
obtained with a Molflow code 
based on TPMC (written by R. 
Kersevan, CERN)

Effective pumping speed Seff: can be calculated 
for various gases and various pumps using only 
the w value:

𝐶𝐶 = 𝑤𝑤 𝐴𝐴�𝑣𝑣
4

;  𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑆𝑆�𝐶𝐶
𝑆𝑆+𝐶𝐶



Combining of TPMC results and diffusion model
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• Complex shape vacuum 
chamber components can be 
modelled with TPMC

• Transmission probability of 
pumping ports w will be 
converted to

• Vacuum conductance
• Distributed pumping speed:

• Analytical 1D optimisation can 
include these results as 
parameters or variables.



Pressure profile along the DLS arc
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Comparison between 
a 1D analytical results and 
a 3D TSMC (MOLFLOW) simulation 
results for some elements of the 
Diamond LS vacuum chamber:
• Local difference is up to 50% -

acceptable in this application
• Average difference is less than 

1.5% - insignificant



Comparison between models
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Model Diffusion Test Particle Monte-Carlo
Accuracy 1D simplified model

Global parameters: 
P, u, S, etc.

3D accurate model
Local parameters:
n, w, α, etc.

Complicate shape Not accurate Accurate
Long structures Short time calculations Very long calculations
Vacuum system 
optimisation

Easy to change and calculate Time consuming modelling and 
calculations

Molecular beaming Does not consider Accurate
Including e-cloud 
induced desorption

Easy, just by adding another 
term on q(z,t)

Possible.

Including ion induced 
pressure instability

Quite easy, modifying equation 
and new finding another 
solution.

Requires another algorithm of 
modelling and a new code

Use Good knowledge of gas dynamic is essential



Towards the final design
 Proceed with the mechanical engineers to produce design and 

manufacturing specifications and drawings for vessels and components
 Build to print
 Design and manufacture

 Liaise with accelerator physicists over vessel impedances
 Transitions
 Tapers
 Spring fingers

 Dealing with specific problems 
 SR power
 E-cloud
 Etc.
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Example: ILC DR arc cell components
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BPM bellow arrangement 



Example: ILC DR wiggler section
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Challenges in a wiggler section design:
o SR power absorption – up to ~40 kW per wiggler
o Minimising a number of SR photons hitting beam chamber inside a wiggler to provide low PEY

o Antechamber and shadow

o Grooved top and bottom and TiN coating to provide low SEY
o Sufficient pimping (NEG strips + SIPs)
o Impedance calculation

Schematic Positron 
Wiggler

BPM with Bellows 
arrangement

Quad Magnet
Steering Magnet
(could be eliminated by 
introducing a mover system for 
the Quad magnet)



ILC DR wiggler section (88 Section repetitions)
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Copper ‘wedges’ to provide 
smooth aperture transition

E-cloud 
suppression 
grooves

Ceramic supports 
and NEG strips Internal Chamber 

coating: TiN
4 Cooling 
channels

Antechamber to 
reduce PEY



SR power absorber
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Smaller downstream 
aperture provides 

a shadow for BPM and 
a following wiggler

Serrations for radiation 
absorption

Pumping port with a large 
vacuum conductance

Cooling channels



Vacuum Diagnostics
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Total and Partial Pressure measurement
Matched to requirements 
 Inherent accuracy

Location
Representative readings
Gauge interactions
External influences
 Magnetic fields
 Radiation



Towards the final design
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Draw up test and acceptance 
specifications and schedules.

• Leak testing
• Cleanliness
• Factory and Goods Inward

Draw up installation procedures.



Some common pitfalls

Basic Design
 Underestimating internal surface 

areas and “gassy” items.
 Forgetting about conductance 

limitations.
 Forgetting about pumping 

speeds being pressure, species 
and history dependent.
 Failing to appreciate the extent 

and implications of dynamic 
processes.

Manufacturing Design
 Failure to check vessel and 

component manufacturing drawings 
for:
 Materials used
 Trapped volumes (solvent traps)
 Cleanability
 Temperature limitations
 Impedance problems
 Handling
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Some common pitfalls

Process

Over specifying
Under specifying

Manufacturing
 Assuming manufacturers know what 

they are doing (management and shop 
floor).
 Failing to think through the 

implications of concessions and 
design changes.
 Failing to specify (or agree) a rigorous 

enough test programme, including 
methods.
 Incorrect sequencing of inspection and 

test procedures.
 Insufficient documentation.
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… and finally

A good design is one which 
meets its specification
 allows for later improvements
 is economical
 is reliable
 is maintainable
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How good is a vacuum design?
 If everything considered correctly in modelling and vacuum and 

mechanical design:
 Input data
 Parameters
 Specification

 If everything done correctly
 At manufacturer’s sites
 Storage, installation and operation

 If there is no unexpected changes in start-up and operation 
scenario

 Then the vacuum design can be made to meet the 
vacuum specifications
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Modelling vs measured data for the Diamond LS
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