Shining a light on nuclear astrophysics with γ-beams at HIγS

Robin Smith <u>Robin.Smith@shu.ac.uk</u> **C**@UnclearPhysics

UK Nuclear Physics Community Meeting- 11th January 2023

Overview

- Nuclear physics at Sheffield Hallam University
- Overview of HIγS facility
- Importance of ${}^{12}C(\alpha,\gamma)$ reaction in astrophysics
- Efforts to measure $^{12}C(\alpha,\gamma)$ using Optical TPC at HI γS
 - Published results and on-going analysis
- New measurements of ${}^{12}C(\alpha,\gamma)$ with a new electronic TPC
 - on-going analysis

Nuclear physics at Sheffield Hallam

Robin Smith

Raed Dallal New detector technologies

Ocean Wong Neutron spectrum unfolding (UKAEA)

Olivia Tindle Alpha particle clustering in light nuclei

Kris Haverson Nuclear structure & astrophysics with TPC detectors

Kimberley Lennon

Machine learning for improvements in gamma spectroscopy (UKAEA)

HIγS facility

HIγS facility

- Quasi-monoenergetic γ-beams
- Energies from 1 to 100 MeV with 1.3–3.9 % energy resolution beam from linac booster synchrotron Linear and circular Y-ray beam polarisation FEL mirror 0.0.1 beam e-beam Contrat air air Mark Emamian IWAA2014 10-15-2014

HIγS facility

- Free electron laser $-\lambda = 190 1064$ nm
- Compton backscattering increases the γ energy

[2] A. Endo, Laser Pulses-Theory, Technology, and Applications. InTech, (2012)

Stellar helium burning $- {}^{12}C(\alpha,\gamma){}^{16}O$

- The ratio of carbon-to-oxygen after helium burning
 - Composition of White Dwarfs
 - Yield of intermediate-mass isotopes (C, Ne, O burning etc.)
 - Explosive burning light curves of Type Ia supernovae
 - Final states of massive stars Type II supernovae

Stellar helium burning $- {}^{12}C(\alpha,\gamma){}^{16}O$

- The ratio of carbon-to-oxygen after helium burning
 - Cross sections for $3\alpha \rightarrow {}^{12}C$ and

$$^{12}C(\alpha,\gamma)^{16}O$$

"The single most important nuclear physics uncertainty in astrophysics"

$$\frac{7.12}{6.92} \quad \frac{1}{2^{+}} \quad \frac{7.16}{\alpha + {}^{12}C}$$

[3] W.A. Fowler, Rev. Mod. Phys. 56 (1984) 149.

Data evaluation efforts

[4] R. J. deBoer et. al, The ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction and its implications for stellar helium burning, Rev. Mod. Phys. **89** (2017)

New method: ${}^{16}O(\gamma,\alpha){}^{12}C$

- Measure reverse process photodissociation of ¹⁶O inside active target detector
- The γ -beam excites ¹⁶O target to a known energy
- Measure the angular distributions of the emitted ¹²C and α from the break-up <u>Time Projection Chamber</u>

Method: ${}^{16}O(\gamma,\alpha){}^{12}C$

- Advantages
 - Higher cross section detailed balance
 - Ability to measure precise angular distributions with TPC

Method: ${}^{16}O(\gamma,\alpha){}^{12}C$

- Advantages
 - Higher cross section detailed balance
 - Ability to measure precise angular distributions with TPC

¹⁶O(γ , α)¹²C with an Optical TPC

- Proof-of-principle experiment
- Optical TPC operating with $CO_2 + N_2$ gas mixture
- Focused on higher energy region $E_{cm} = 2 3.5 \text{ MeV}$
 - cross section is higher and shapes of angular distributions vary significantly

ARTICLE

https://doi.org/10.1038/s41467-021-26179-x

Precision measurements on oxygen formation in stellar helium burning with gamma-ray beams and a Time Projection Chamber

R. Smith ^[] ^{1,2 ⊠}, M. Gai ^[] ², S. R. Stern ^[] ², D. K. Schweitzer ^[] ² & M. W. Ahmed^{3,4}

[5] R. Smith, M. Gai et al. Nature Communications 12, 5920 (2021).

Check for updates

Total cross section

Angular distributions

Angular distributions

ϕ_{12} values

ϕ_{12} values

¹⁶O(γ , α)¹²C with an Optical TPC

- Later experiment performed analysis by Kris Haverson (Ph.D. at Sheffield Hallam)
- Optical TPC operating with $N_2O + N_2$ gas mixture
- Focused on high energy region $E_{cm} = 2 3 \text{ MeV}$
- Higher statistics
- No carbon in the target should permit simpler analysis

Angular distribution

ϕ_{12} values

ϕ_{12} values

¹⁶O(γ,α)¹²C with an electronic TPC

- New experiment performed at HI_γS in 2022
- Electronic TPC operating with pure CO₂ gas
- TPC built by University of Warsaw
- ${}^{16}O(\gamma, \alpha){}^{12}C$ measured at nominal $E_{cm} = 1.35 6.7$ MeV
- 275 hours of beamtime during 2022

¹⁶O(γ, α)¹²C with an electronic TPC

¹⁶O(γ,α)¹²C with an electronic TPC

Active volume

33 x 20 cm² (readout) x 20 cm (drift)

Charge amplification

Gas Electron Multiplier (GEM) structures

Readout

Planar, 3-coordinate, redundant strip arrays, ~1000 channels GET electronics

¹⁶O(γ,α)¹²C with an electronic TPC

Active volume 33 x 20 cm² (readout) x 20 cm (drift)

Charge amplification Gas Electron Multiplier (GEM) structures

Readout

Planar, 3-coordinate, redundant strip arrays, ~1000 channels GET electronics

¹⁶ $O(\gamma,\alpha)^{12}C$ preliminary results

$E_{\gamma} = 8.66 \text{ MeV} (E_{cm} = 1.5 \text{ MeV})$

time

[6] Mazzocchi, C.: Studies of photonuclear reactions at astrophysical energies with an active- target TPC. Paper presented at the 10th Nuclear Physics in Astrophysics Conference, CERN, 4–9 September 2022 (2022)

^{12C}(γ ,3 α) preliminary results

E_γ = 8.51 MeV (**E**_{cm} = **1.35 MeV**)

time

[6] Mazzocchi, C.: Studies of photonuclear reactions at astrophysical energies with an active- target TPC. Paper presented at the 10th Nuclear Physics in Astrophysics Conference, CERN, 4–9 September 2022 (2022)

¹⁶O(γ, α) prelim. ang. distributions

[6] Mazzocchi, C.: Studies of photonuclear reactions at astrophysical energies with an active- target TPC. Paper presented at the 10th Nuclear Physics in Astrophysics Conference, CERN, 4–9 September 2022 (2022)

¹⁶O(γ , α) prelim. ang. distributions

[6] Mazzocchi, C.: Studies of photonuclear reactions at astrophysical energies with an active- target TPC. Paper presented at the 10th Nuclear Physics in Astrophysics Conference, CERN, 4–9 September 2022 (2022)

Summary

- Sheffield Hallam involved in several exciting studies in nuclear astrophysics using γ -beams and TPC detectors
 - Leading analysis of existing data
 - New experiments at HIγS

- Publication: R. Smith et al. Nature Communications 12, 5920 (2021).
 - Viability of γ -beam experiments for measuring ${}^{12}C(\alpha, \gamma)$ using TPCs
 - Newer Optical TPC data with N₂O gas mixture are promising
- State-of-the-art electronic TPC data are undergoing analysis
 - Data analysis led by Warsaw with contributions from SHU and UConn

• Nuclear structure studies on carbon- $12 - {}^{12}C(\gamma, \alpha)$

Collaborators

Mikołaj Ćwiok¹, *Wojciech* Dominik¹, *Aleksandra* Fijałkowska¹, *Mateusz* Fila¹, *Zenon* Janas¹, *Artur* Kalinowski¹, *Krzysztof* Kierzkowski¹, *Magdalena* Kuich¹, *Chiara* Mazzocchi^{1,*}, *Wojciech* Okliński¹, *Marcin* Zaremba¹, *Moshe* Gai², *Deran K*. Schweitzer², *Sarah R*. Stern², *Sean* Finch^{3,4}, *Udo* Friman-Gayer^{3,4,**}, *Samantha R*. Johnson^{5,4}, *Tyler M*. Kowalewski^{5,4}, *Dimiter L*. Balabanski⁶, *Catalin* Matei⁶, *Adrian* Rotaru⁶, *Kristian C.Z*. Haverson⁷, *Robin* Smith⁷, *Ross A.M*. Allen⁸, *Mark R*. Griffiths⁸, *Stuart* Pirrie⁸, and *Pedro* Santa Rita Alcibia⁸

¹Faculty of Physics, University of Warsaw, Warsaw, Poland

²University of Connecticut, CT, USA

³Physics Department, Duke University, Durham, NC, USA

⁴Triangle Universities Nuclear Laboratory, Durham, NC, USA

⁵Department of Physics & Astronomy, University of North Carolina, Chapel Hill, NC, USA ⁶IFIN-HH / ELI-NP, Bucharest-Magurele, Romania

⁷Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK

⁸School of Physics and Astronomy, University of Birmingham, Birmingham, UK

