Microscopic Description of Nuclear Reactions From Two- and Three-Nucleon Interactions

Matteo Vorabbi January 11th, 2023

Outline

1. No-Core Shell Model with Continuum Ab initio calculations in nuclear physics Application to ⁹He and ⁷Be/⁷Li

2. Microscopic optical potential at intermediate energies

- Motivations
- Extension of the model

Outline

1. No-Core Shell Model with Continuum • Ab initio calculations in nuclear physics Application to ⁹He and ⁷Be/⁷Li

Nuclear structure and reactions

 $\rangle = E |\Psi\rangle$ $H|\Psi\rangle$

From NPB Proceed. Suppl. 00 (2012) 1-37

From Derek Leinweber website

Unified approach to bound & continuum states

- No-Core Shell Model
 - A-nucleon wave function expansion in the harmonic oscillator basis
 - Short- and medium-range correlations
 - Bound states, narrow resonances ____
- NCSM with Resonating Group Method
 - Cluster expansion, clusters described by NCSM
 - Proper asymptotic behaviour
 - Long-range correlations
- No-Core Shell Model with Continuum

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \Big|^{(A)} \mathfrak{D}, \lambda \Big\rangle + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big\rangle + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big\rangle + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} \mathcal{D}, \lambda \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r}) \Big|^{(A)} + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu} (\vec{r$$

Structure of the ⁹He system

Two longstanding problems affect the physics of the ⁹He system

- 1. The existence of the 1/2⁺ resonance
- 2. The width of the 1/2- resonance
 - Experimentally ~ 0.1 MeV
 - Theoretically ~ 1 MeV

From talk by Nigel Orr at ECT* (2013)

Structure of the ⁹He system

- Two resonances found corresponding to 1/2- and 3/2states
- No 1/2⁺ resonance has been found
- To reproduce the correct width of the 1/2- resonance is extremely important to reproduce the excitation energy of the 2⁺ state of ⁸He

J^{π}	NCSMC		NCSMO
$1/2^{-}$	$E_R = 0.69$	$\Gamma = 0.83$	$E_R = 0.68$
$3/2^{-}$	$E_R = 4.70$	$\Gamma = 0.74$	$E_R = 3.72$

[Vorabbi et al., PRC **97**, 034314 (2018)]

 $\Gamma = 0.37$ $\Gamma = 0.95$

⁷Be and ⁷Li systems

Nuclear Astrophysics

•Determination of the ⁷Li abundance in the early universe

$$^{3}\text{He}(\alpha,\gamma)^{7}\text{Be}$$
 $^{3}\text{H}(\alpha,\gamma)^{7}\text{Li}$

 Prediction of the production rate of ⁸B and ⁷Be neutrinos in the sun

 $^{3}\mathrm{He}(\alpha,\gamma)^{7}\mathrm{Be}$

${}^{\bf 6}{\rm Li}({\bf p},{\boldsymbol \gamma}){}^{\bf 7}{\rm Be}$

•Lanzhou experiment: possible resonant enhancement near the threshold [He et al., Phys. Lett. B 725, 287 (2013)]

•New LUNA experiment: ruled out the existence of low-energy resonances

[Piatti et al., Phys. Rev. C 102, 052802(R) (2020)]

Tritium Breeding

 Fusion energy generation with deuteron-tritium fuel such ITER <u>https://www.iter.org</u>

$${}^{6}\mathrm{Li}(n, {}^{3}\mathrm{H}){}^{4}\mathrm{He}$$

Theoretical Calculations

Analyzed mass partitions for ⁷Be
³He + ⁴He
⁶Li + p

•Analyzed mass partitions for ⁷Li -³H + ⁴He -⁶Li + n -⁶He + p

⁷Li system

- Analysed mass partitions
 - 1. ${}^{3}H + {}^{4}He$
 - 2. ⁶Li + n
 - 3. ⁶He + p
- The experimental energy spectrum is reproduced in the correct order
- No coupling between the different mass partitions
- Ground state and first excited state are obtained as *bound* states

Jp = 3/2-	³ H + ⁴ He	⁶ Li + n	⁶ He + p	Ex
E [MeV]	-38.65	-38.13	-38.06	-39.2

[Vorabbi, Navrátil, Quaglioni, Hupin, PRC 100, 024304 (2019)]

⁷Li system – New predicted states

Future experiment at TRIUMF!!! Status: approved Study of low-lying states in ⁷Li via ⁶He+p resonant elastic scattering in inverse kinematics

- Prediction of new states also with positive parity
- Interesting prediction of a 1/2⁺ resonance just above the threshold of p+6He
- •We still have to keep in mind that this state is in the 3B continuum (⁴He+d+n)

Outline

1. No-Core Shell Model with Continuum Ab initio calculations in nuclear physics Application to ⁹He and ⁷Be/⁷Li

2. Microscopic optical potential at intermediate energies

- Motivations
- Extension of the model

Motivations

- Olncreasing experimental efforts to develop the technologies necessary to study the elastic proton scattering in inverse kinematics
- OAttempts to use such experiments to determine the matter distribution of nuclear systems at intermediate energies

[Sakaguchi, Zenihiro, PPNP 97 (2017) 1–52]

- Measurements are not free from sizeable uncertainties
- □ The Glauber model is used to analyse the data
- □ An essential step in the data analysis is the subtraction of contributions from the inelastic scattering

Develop a microscopic approach to make reliable predictions for elastic and inelastic scattering

[Matsuda et al., PRC **87**, 034614 (2013)]

Motivations

Assessing the impact of the 3N interaction

- For all nuclei we found very small contributions to the differential cross section
- The contributions to the spin observable are larger and they seem to improve the agreement with the data

Extension to non-zero spin targets

[Vorabbi et al., Phys. Rev. C 105, 014621 (2022)]

Extension to non-zero spin targets

[Vorabbi et al., Phys. Rev. C 105, 014621 (2022)]

Extension to antiproton-nucleus elastic scattering

PHYSICAL REVIEW LETTERS 124, 162501 (2020)

Summary

No-Core Shell Model with Continuum

- Inclusion of short- and long-range correlations
- Proper asymptotic behaviour
- Unified description of bound and scattering states
- Future *ab initio* description of alpha clusters in light nuclei

Microscopic Optical Potential

- Simplification of the full many-body problem
- Derivation of an effective nucleon-nucleus complex interaction
- Good description of the elastic scattering observables
- Future extension to inelastic scattering and other processes

