

Binding Blocks UK

A National, Inclusive Programme For Nuclear Physics Education

Elements and Isotopes

Nucleons (A), protons (Z), and neutrons (N)

																Fluorine	Supply risk 📕 <		
H		Periodic Table													Key isotopes ¹⁹ F				
Li	Be	The Royal Society of Chemistry's interactive periodic table features history, alchemy,												Ν	0	Electron configuration [He] 2s ² 2p ⁵			
3	4	explore each section. Use the buttons above to change your view of the periodic table and view Mirrory Reported extreme strength a direct of the periodic table and view Mirrory Reported extreme to report a direct of the periodic table and view Mirrory Reported extreme to report to r													8	Density (g cm ⁻³) 0.001553	Fluorine		
Na	Mg	detailed information.												P 15	S	1 st ionisation energy 1681.045 kJ mol ⁻¹	9 18.998		
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Magnesium	Supply risk 📕 <		
Rb	Sr 38	Υ 39	Zr	Nb	Mo	Tc 43	Ru	Rh 45	Pd 45	Ag	Cd	ln 49	Sn 50	Sb	Te	Key isotopes 24Mg			
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Ha	т	Pb	Bi	Po	Electron configuration [Ne] 3s ²	- Mg		
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	Density (g cm ⁻³) 1.74	Magnesium		
Fr 87	Ra 88	Ac 89	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109	Ds 110	Rg 111	Cn 112	Nh 113	Fl 114	Mc 115	Lv 116	1 st ionisation energy 737.750 kJ mol ⁻¹	12 24.305		
															Some elements only ha	Some elements only have a			
		Ce 58	Pr 59	Nd 60	Pm 61	Sm	Eu 63	Gd	Tb	Dy 66	Ho 67	Er 68	Tm	Yb	Lu 71				
		The Pauli Nin Bu Am Cm Bk Cf Es Em Md No Lk Single N											single naturally occurri	turally occurring					
	90 91 92 93 94 95 96 97 98 99 100 101 102 103 isotope, some have severa													veral.					

Periodic table taken from Royal Society of Chemistry. Interactive version available at: https://www.rsc.org/periodic-table

Elements and Isotopes

Nucleons (A), protons (Z), and neutrons (N)

Energy

Radiation

Medicine

Stars

Technology

Colorful Nuclide Chart by Dr. Ed Simpson, The Australian National University. Interactive version available at: https://people.physics.anu.edu.au/~ecs103/chart/

Energy is from $E = mc^2$ Helium has a lower Helium has a lower has a lower sum has a lower has the sum has a lower has c = 299,792,458 m/s So c^2 is huge!

m = 1 kg (kg * m/s * m/s = J) $mc^2 = 90,000,000,000,000 \text{ J}$ You use (electr.): 19,000,000,000 J/year Incredible energies even if only 0.1% of one gram is converted to energy.

We are all made of stars 🔯

The Stuff Stars Are Made Of Dr. Adam Tuff ISBN: 1527259234

Stellar fusion and energy Deuterium (²H) fusion ($E = mc^2$): ²H + ²H \rightarrow ⁴He + E M_{2H} = 2.0141 amu ; M_{4He} = 4.00026 amu (amu = m(¹²C) /12 = 1.661•10⁻²⁷ kg) 0.0312% deuterium abundance (by H mass)

m = 1 kg (kg * m/s * m/s = J) $mc^2 = 90,080,080,000,000,000 \text{ J}$ You use (electr.): 19,000,000,000 J/year Incredible energies even if only 0.1% of one gram is converted to energy.

Binding Blocks 2022/23

FREE, flexible, nuclear physics learning through live webinars; videos; quizzes; calculations; simulations; and games. Now with additional modules and a brand new GCSE nuclear masterclass. Ready for in-school delivery.

<u>GCSE</u>

- Week 1: Building Blocks of the Universe
- Week 2: Radiation
- Week 3: Fission & Fusion
- Week 4: Medical Physics

<u>A-Level</u>

- Week 1: Energy and Decay
- Week 2: Experimental Nuclear Physics

 Weeks 3 and 4: Optional Modules Nuclear Astrophysics Fusion Technology Medical Physics Particle Physics meets Nuclear Physics

School Kit

Loan scheme for teachers - supported by researchers

Funded and supported mentoring opportunities for Early Career Researchers: a) support first steps into Public and Schools Engagement; b) include their own (your!) research; c) build a foundation for their own PE funding

- Binding Blocks Chart of Nuclides
- Scattering experiment
- Hot-CNO decay and reaction activity
- Kromek D3S scintillator and 'radiation sources'
- 15-cm Diffusion Cloud Chamber

Down-to-Earth Astrophysics (in practice)

Working with schools

Mentoring and workshop development opportunities

https://sites.google.com/york.ac.uk/bindingblocks/pre-16 https://sites.google.com/york.ac.uk/bindingblocks/post-16 https://tinyurl.com/npecr2022

X-ray bursts and neutron stars

- Neutron star in binary system
- "Steals" hydrogen
- H fused to He through catalytic fusion on for example carbon:
- 1) Add four protons (Hydrogen)
- 2) Let two protons beta-decay to neutrons
- 3) Let the final nucleus alpha decay (Helium)

Catalytic fusion through reactions and decays

The Hot CNO-Cycle

Let's play the Hot-CNO game

Fast Catalytic Fusion of Hydrogen

- Fuels Nova explosions and the initial phase of X-ray bursts
- Limited of key isotopes
- Waiting
 ¹⁴O, ¹⁵O, ¹⁸Ne
- Driving explosions

Existing

ME Cyclotron

accelerators

celeration of exotic nuclei E < 25 AMeV.

Deuteron - Proton source

AMeV for the fission fragment

t-Source Ensemble

Existing

Linear Supraconducto Accelerator LINAC E = 14.5 AMeV for ions A/q = 40 MeV for deuterons

Down-to-Earth Astrophysics (in practice)

Challenging to fuse oxygen-15 with helium:

 New facilities for measurement of key nuclear reactions using radioactive ion beams:

Target

- Intense
 Beam
- Pure
- Accelerated

Setup for studying the reactions that happen when we smash the beam into the target

Down-to-Earth Astrophysics (in practice)

Challenging to fuse oxygen-15 with helium:

 New facilities for measurement of key nuclear reactions using radioactive ion beams:

Target

- Intense
 Beam
- Pure
- Accelerated

Setup for studying the that happen when we the beam into the target

Down-to-Earth Astrophysics (in practice)

Down-to-Earth Astrophysics (in practice)

Binding

- ★ July 2019 @GANIL, France
- ★ RIB ¹⁵O @ 4.7 MeV/u
- **★** Beam Intensity $\sim 10^7$ pps
- [https://www.ganil-spiral2.eu/] [**M Assiè**, et al. NIMA] [**J.S. Rojo**, et al. J Phys.]
- ★ Triple coincidence using:
 - \circ AGATA HPGe: prompt- γ
 - MUGAST DSSDE: light particle t
 - VAMOS: ¹⁹Ne recoil

Finding a needle in a hay stack

80 Counts /

60

- Final coincidence-gated y-ray spectrum
- 3 events (from among one billion events) and 20 TB of data...)
- Extremely challenging experiment!

Even more challenging than expected¹ for stellar explosions to fuse oxygen-15 2ke< and helium

New chamber

Down-to-Earth Astrophysics

How are we made of Stars? - How can we know what they make?

