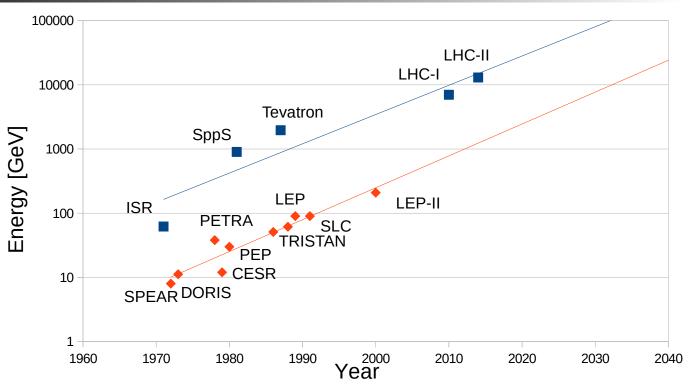
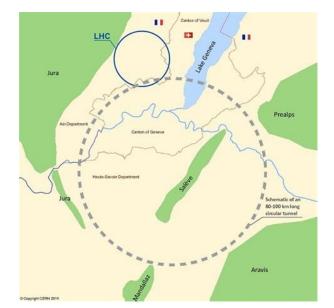
Muon Collider Projects

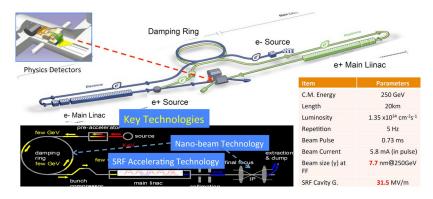


Chris Rogers

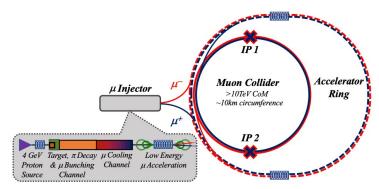
The Future of Particle Physics



- Effort to explore phenomena at higher and higher energies
- Corresponds to smaller scales
- Higher energy \rightarrow bigger, more expensive, more power hungry
 - Electricity cost is limiting LHC performance right now
- What should come next?

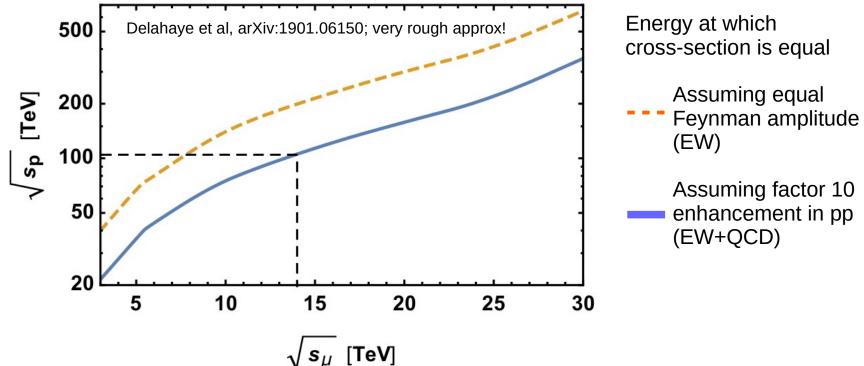


What next?



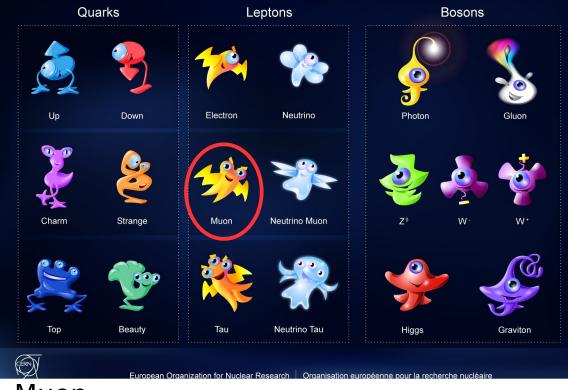
Protons?

Electrons?


Muons?

Science & Technology Facilities Council

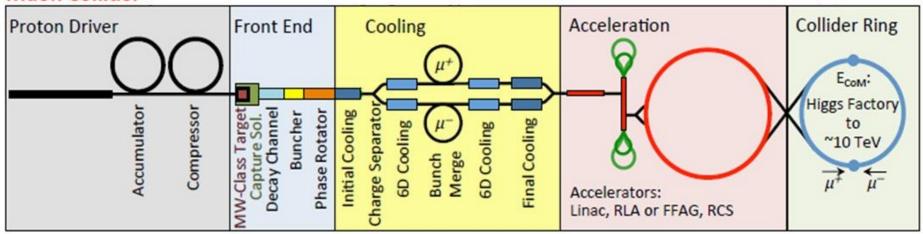
Physics potential of muons


- Proton collision energy is shared between quarks
 - Effective energy significantly reduced
- Seek a particle which
 - Is not so low mass as an electron
 - Is a fundamental particle
- Muons!

Science & Technology Facilities Council

Muons

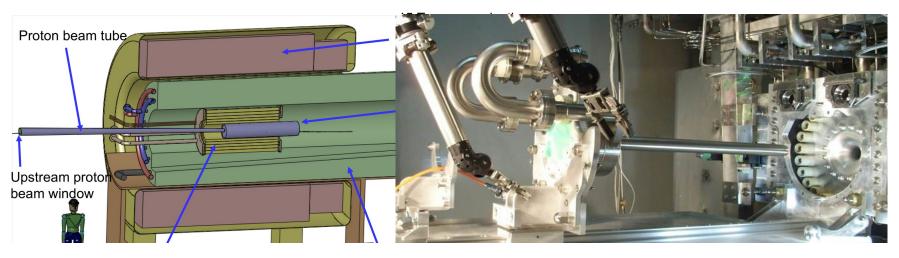
Le bestiaire


- Muon
 - Half-life 2.2 µs
 - Mass 105.658 MeV/c
 - 207 times electron mass
- What would a muon collider look like?

5

Muons – Disruptive Technology

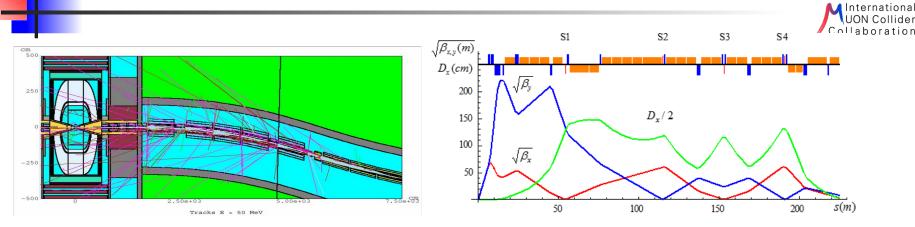
Muon Collider


- MW-class proton driver \rightarrow target
- Pions produced; decay to muons
- Muon capture and cooling
- Acceleration to TeV & Collisions
- Critical Challenges:
 - Can we make a high intensity muon beam?
 - Target
 - Can we cope with muon decay products?
 - Collider

6

6

Muon Collider Target



- Protons on target \rightarrow pions \rightarrow muons
 - Heavily shielded, very high field solenoid captures π^+ and π^-
- Challenge:
 - Heating and forces acting on the target
 - Radiation environment
 - Maintaining good pion production
- Fluidised powder target strong option

Machine Detector Interface

- Muon collider requires extremely strong focusing
 - Strong focusing → dense beams → more collision products
 - Beam is ~ microns in size
- Elaborate system of focusing near the interaction point
- Complicated shielding to protect detector from muon decay products

Muon Collider Target Ph.D.

- Can we achieve the parameters required for the muon collider?
 - Can the target survive the heating?
 - What is the radiation environment like?
 - Do we make enough pions?
- Development of novel targets
 - Bottle neck for many proton accelerators
- Collaborate with world's leading pion production target team
 - RAL technology and Warwick University
 - Developing targets for T2HK and DUNE
- Work closely with CERN and other target development groups worldwide

Muon Collider MDI D.Phil.

- Study on the Machine Detector Interface of the muon collider
 - Can we achieve the required beam quality?
 - How can we make these tiny beams?
 - What are the technologies required to get the beams to line up?
 - How do we protect the detector and other equipment from muon decays?
 - Neutrino radiation is an issue!
- Collaborate with Oxford University's John Adams Institute
 - Experts on Machine Detector Interface
- Vital to determine physics performance of the facility
 - MDI determines the detector design \rightarrow physics reach

What's in it for You?

- Accelerator physicists are highly employable!
 - Many (permanent) lab staff positions
 - Very high demand
 - ESS (Copenhagen)
 - ISIS2 (Oxford)
 - HL-LHC (Geneva)
 - PIP2/3 (Chicago)
 - Many more
- High prestige roles
 - Involved in a major international collaboration
 - Very externally facing
 - Lots of opportunities to travel and meet community members
- Fun
 - Super interesting work
 - Novel! Chance to invent cool stuff
 - You can determine what will be the next collider in Europe

Final Word

- Collider to follow LHC will be decided in next few years
 - Will determine future of particle physics for next 50 100 years
 - These studentships mean that you will contribute to this decision
- The muon collider has the potential to explore physics reach at the highest energies
 - Fraction of the footprint of comparable facilities
 - Expectation of much lower power requirements
 - Advance particle physics by ~ decades
- Many technical challenges
 - All are manageable with current or near-to-current technologies
- The next machine will be your accelerator
 - The technology is for you to invent
 - The technology is for you to demonstrate
 - The collider will be a defining technology for your generation

