

The ITRF Project

Hywel Owen (on behalf of the ITRF team) STFC Daresbury Laboratory Accelerator Science and Technology Centre

14th December 2022 Novel End-Station Development: Consultation 1

Why protons? Why ions?

UK position and clinical justification: https://www.birpublications.org/doi/10.1259/bjr.20200247

$$-\frac{dE}{dx} = \frac{4\pi}{m_e c^2} \cdot \frac{nz^2}{\beta^2} \cdot \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \cdot \left[\ln\left(\frac{2m_e c^2\beta^2}{I\cdot(1-\beta^2)}\right) - \beta^2\right]$$

Ions such as C6+ provide superior RBE that is beneficial for certain hard-to-treat tumours Providing those sorts of treatments is the USP for the CRTF and ITRF provides evidence for its need

ITRF: Ion Therapy Research Facility Beyond protons, for cancer treatment

WHY

- one in two people will develop cancer in their lifetime in the UK
- conventional radiotherapy used in around 50% patients
- ion therapy may offer benefits for certain patients, but the basic radiobiology needs exploring

WHAT

- a world-first infrastructure for proton/ion beams towards cancer treatment
- a flagship project for the region, building on the UK's research community strengths and the science and innovation heritage of the national laboratories

Ion Therapy Research Facility – the ambition

HOW

- A compact, single-site national research infrastructure delivering very high dose rates
- Protons and beyond, at energies sufficient for both in-vitro and in-vivo studies
- Consider technical options, with different risk profiles

PROPOSED PLAN

- Conceptual design of layout, cost and operation of a research facility
- Develop innovative laser-plasma technology, building upon world-leading expertise within the LhARA collaboration
- Develop innovative end-station designs, building on existing UK expertise in proton radiobiology research
- Collaborative agreement with CERN allows us to benefit from enormous experience and expertise in accelerator technology and successful projects

Building on the NHS success: proton beam therapy

- The first ion in clinical use in the NHS is the **proton**
- The NHS approach with proton beam therapy is:
 - evidence-based with intention to cure
 - emphasis on children & young adults, under 25
- Intend to build on experience gained in proton therapy clinical and research activity

The Clatterbridge Cancer Centre NHS Foundation Trust

The Clinical Context

- 1989: Clatterbridge UK world's 1st hospital proton therapy centre (62 MeV, ocular); 100 patients/year
- 2007: NRAG report 'Radiotherapy: developing a world class service for England' recommends proton facilities
- 2007: Cancer Reform Strategy
- 2008: Proton Overseas Programme; 1102 patients (2008 – 2018) <u>https://doi.org/10.1016/j.ijrobp.2020.07.2456</u> <u>https://doi.org/10.1016/j.clon.2018.02.032</u>
- 2012 NHS Strategic Outline Case
- 2015: Full Business Case approved for 2 NHS centres
- 2018: NHS Christie 1st patients seen as a big success story
- 2021: NHS UCLH 1st patients

Protons in UK:

- Evidence-based
- Intention to cure
- Emphasis on children, young adults (<25), adults with rare tumours

Clatterbridge – 62 MeV Scanditronix cyclotron Basis for much UK technology and clinical-related research

Christie – 250 MeV Varian cyclotron + unique research beamline

ITRF Timeline – Where Do We Want to Get To?

	YR	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
ITRF	PA1 ITRF Conceptual Design																				
	PA2 ITRF Technical Design																				
	Construction																				
	ITRF research - physics + pre-clinical biology																				
lon	Appraisal of clinical evidence																				
Overseas	Partner Research Programmes																				
Programme	Referral Programme																				
	Cost Analysis																				
CRTF	CRTF Technology Collaborations																				
	CRTF Conceptual Design																				
Clinical	CRTF Technical Design																				
Research &	CRTF Tendering																				
Treatment	CRTF Construction																				
Facility	Commence clinical research & treatment																				
iecnnology																					

Facilities Council

Daresbury Laboratory

Partner/Collaborating Institutions

Daresbury Laboratory

Science and

Technology

ITRF Status & Plan

- ITRF funded through UKRI Infrastructure Fund
- 2-year Preliminary Activity will deliver a CDR to address:
 - What research programme ?
 - What design ?
 - What cost basis ?
 - What operating model ?
- During the Preliminary Activity:
 - Working groups to produce Conceptual Design Report, outline design and costing
 - Review designs with community
 - Establish funding roadmap
 - Develop key technologies
 - Examine alternative ways to achieve research goals
- STFC CERN have agreed an Umbrella Collaboration Agreement to provide a framework to enable free exchange of ideas and technologies that is very relevant to ITRF (NIMMS project)

Daresbury Laboratory

UKRI-STFC

- Partner in numerous previous projects overlapping particle therapy and accelerator science
- 2 x National Laboratory (Daresbury and RAL) experienced in developing national infrastructures
- Technical partner in ITRF to assist in engineering integration and facility development

DIAMOND Light Source

EPAC plasma facility

CLARA high-brightness test facility

RUEDI diffraction/imaging facility

Stage 1 / Stage 2 Facility Vision

