

Design of a Tuneable Monochromatic Gamma Ray Source using Inverse Compton Scattering (ICS)

Alex Morris November 2022

Primary Supervisor: Laura Corner Secondary Supervisor: Peter Williams

Outline:

• Applications of Monochromatic Gamma-rays

e⁻

Laser

γ

- ICS Theory
- Design of ICS experiment
 - Electron beam parameters
 - Laser parameters
- Gamma source characteristics
- Future work plan
 - Optical Cavities
- Summary

Applications of Monochromatic Gamma rays

Nuclear transmutation via (γ, n) reaction for treating nuclear waste or creating medical radioisotopes – source ~10 MeV is needed

Nuclear resonance fluorescence (NRF) for scanning and detecting nuclear material – Narrow bandwidth source of ~2 MeV is needed.

Hayakawa, T., et al. (2010) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 621(1–3), 695–700.

Why Inverse Compton Scattering?

Bremsstrahlung: High energy but not monochromatic

Synchrotron: Not high enough energy to generate MeV photons. Characteristic energy is: heBy E $2\pi m_{\rho}$ e.g. B = 1 T, 1 GeV electrons results in 460 eV photons

ICS Theory-Monochromatic Gamma rays

Deitrick, K., et al. (2021). *Physical Review Accelerators and Beams*, 24(5), 1–17. https://doi.org/10.1103/PhysRevAccelBeams.24.050701

ICS Theory-Collimation to reduce bandwidth

$$E_{\gamma} = \frac{E_{laser}(1 - \beta \cos(\phi'))}{1 - \beta \cos(\theta) + (1 - \cos(\theta'))E_{laser}/E_e}$$

The energy of the scattered photon depends on the angle it scattered through.

Bandwidth of the source

$$\frac{\Delta E_{\gamma}}{E_{\gamma}} = \sqrt{\frac{\sigma_{\theta}}{E_{\theta}}^2 + (\frac{\sigma_e}{E_e})^2 + (\frac{\sigma_L}{E_L})^2 + (\frac{\sigma_{\epsilon}}{E_{\epsilon}})^2}$$

Collimating the scattered photons will exclude the photons scattered though larger angles, thus reducing the bandwidth of the source.

Deitrick, K., et al. (2021). *Physical Review Accelerators and Beams*, 24(5), 1–17. https://doi.org/10.1103/PhysRevAccelBeams.24.050701

ICS Theory - Photon Production

• More photons are produced in the forward or backward directions because of the final Lorentz transform.

• Photons are produced in the forward direction into a $\theta = 1/\gamma$ cone.

Design of Experiment – Electron Beam

Parameter Unit Quantity Electron kinetic energy, E_e 250MeV Repetition rate, f1 - 100Hz Electron Bunch charge, eN_e 100pС Transverse normalised rms emittance, ϵ_N 1 mm-mrad beam 0.73(2.4)rms bunch length, $\Delta \tau$ mm (ps)Absolute energy spread, ΔE_e 20keV parameters 8.00×10^{-5} Relative energy spread, $\Delta E_e/E_e$ **Baseline** parameters β -function at the IP, β^* 1.23m Electron bunch spot size, σ_{electron} 50 μm L PHASE 2 PHASE 3 PHASE **CLARA 3unch Compresso** rans. Def. Cavity **X-band Linearis** FEL Diagnostics **FEBE Trans. Def. Cavit** accelerator Spectrometer pectrometer aser Heater Diagnostics Beam Dump Afterburner Diagnostics **Modulator** Chicane Modulat Linac 1 Linac 3 -inac 4 -inac 2 ogleg & FEBE Gun **Radiators & Delay Chicanes** upgrade VELA ~175 MeV ~250 MeV **PI Laser** Seed Laser

Angal-Kalinin, D. et al. (2020). Physical Review Accelerators and Beams, 23(4), 44801. https://doi.org/10.1103/PhysRevAccelBeams.23.044801

Design of Experiment - Laser

Parameter	Case A	Case B	Case C	Unit	Nd·VAG
Wavelength, λ_{laser}	800	800	1064	nm	
Photon energy, E_{laser}	1.55	1.55	1.17	eV	laser
Pulse energy, E_{pulse}	5.00	0.10	0.06	J	
Number of photons per pulse, N_{laser}	2.02×10^{19}	4.03×10^{17}	3.21×10^{17}	-	
Repetition rate, f	1	1	1 - 10	Hz	
Rms spot size at the IP, σ_{laser}	45	45	45	$\mu { m m}$	
Crossing angle, ϕ	0	0	0	rad	
Rms pulse length, τ_{laser}	0.01	2.00	21.23	\mathbf{ps}	
Normalised Laser Vector Potential, a_0	0.83	8.56×10^{-3}	2.71×10^{-3}	-	
Rms spectral Bandwidth, $\Delta E_{laser}/E_{laser}$	0.03185	0.03185	10^{-4*}	-	
	ParameterWavelength, λ_{laser} Photon energy, E_{laser} Pulse energy, E_{pulse} Number of photons per pulse, N_{laser} Repetition rate, f Rms spot size at the IP, σ_{laser} Crossing angle, ϕ Rms pulse length, τ_{laser} Normalised Laser Vector Potential, a_0 Rms spectral Bandwidth, $\Delta E_{laser}/E_{laser}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

* Estimated parameter, not available upon request.

Collimation of Gamma Source

- Gamma source will be collimated to reduce the bandwidth of the source and to reduce the flux before impinging on a detector 10 m away.
- The flux is reduced so that a detector would not be saturated and single photons events can detected, ~1000 photons per interaction event (assuming an efficiency of detector of 0.1%).

Gamma source parameters

Optical Cavities future work

• Optical cavities recirculate the laser pulses to store power in the cavity

$$\mathcal{E}_0 = \frac{P_{\text{circ}}}{P_{\text{in}}} \qquad = \frac{1 - r^2}{(1 - ar)^2}.$$

 Can be used to increase the effective repetition rate of the laser pulses

Joe Crone, thesis

Summary

- ICS is a method of producing tunable, high energy monochromatic photons.
- I am currently designing an ICS demonstrator experiment.
- I am undertaking a secondment to the Université Paris Saclay to learn about optical cavities, as this would be a major improvement for an ICS source.

Thank you for listening!

Any questions?