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Nuclear resonance fluorescence (NRF) for scanning and

Nuclear transmutation via (y,n) reaction for
detecting nuclear material — Narrow bandwidth source of

treating nuclear waste or creating medical
radioisotopes — source ~10 MeV is needed ~2 MeV is needed.

Hayakawa, T., et al. (2010) Nuclear Instruments and Methods in Physics Research, Section A:

Li, D., et al. (2009) Journal of Nuclear Science and Technology, 46(8), 831-835. Accelerators, Spectrometers, Detectors and Associated Equipment, 621(1-3), 695—700.
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Bremsstrahlung: Synchrotron:
High energy but not Not high enough energy to
monochromatic generate MeV photons.
Brf{:nsstrahlung spectrum using 250 MeV electrons (Kramers' law) Characterlstlc energ;l |S
heBy
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e.g.B=1T, 1 GeV electrons
results in 460 eV photons
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Monochromatic Gamma rays
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Deitrick, K., et al. (2021). Physical Review Accelerators and Beams, 24(5), 1-17. https://doi.org/10.1103/PhysRevAccelBeams.24.050701
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Collimation to reduce bandwidth

Before scattering E
’ b laser

E laser ( 1 — ,-;f C E'H( 'f'ilf } )

T Beos(0) + (1 — cos(0) Ejser/ Fe

The energy of the scattered photon depends on the angle
it scattered through.

Bandwidth
of the source

After scattering

Collimating the scattered photons will exclude the photons
scattered though larger angles, thus reducing the
bandwidth of the source.

Deitrick, K., et al. (2021). Physical Review Accelerators and Beams, 24(5), 1-17. https://doi.org/10.1103/PhysRevAccelBeams.24.050701
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ICS Theory - Photon Production

* More photons are produced in the forward or backward
directions because of the final Lorentz transform.

Differential cross section da/dQ [m?], A = 800 nm, E. = 25 keV
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* Photons are produced in the forward direction into a 6 = 1/y
cone.
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Electron Beam
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Laser Heater
X-band Lineariser
Bunch Compressor
Spectrometer
Trans. Def. Cavity
Diagnostics
Spectrometer

Modylator

Trans. Def, Cavity

” FEL Diagnostics

Linac 1
Dogleg
Chicane
Modulatgo
Afterburner
Beam Dump

Radiators & Delay Chicanes

I Diagnostics

VELA ~175 MeV ~250 MeV
Pl Laser Seed Laser

Angal-Kalinin, D. et al. (2020). Physical Review Accelerators and Beams, 23(4), 44801. https://doi.org/10.1103/PhysRevAccelBeams.23.044801
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Design of Experiment - Laser

Parameter Case C
Wavelength, Alaser 800 800 1064
Photon energy, Flaser 1.55 1.55 1.17
Pulse energy, Epuse 5.00 0.10 0.06
Number of photons per pulse, Njager 2.02 x 10 14.03 x 1017 3.21 x 107
lepetition rate, f 1 ' 1-10

Rms spot size at the IP, oager 45 45

Crossing angle, ¢ 0 ' 0
Rms pulse length. Taser 0.01 21.23
Normalised Laser Vector Potential, ag 8.56x 1072 | 2.71x 1072
Rms spectral Bandwidth, AFEycer/ Elaser 0.03185 0.03185 10—

" Estimated parameter, not available upon request.
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Collimation of Gamma Source

« Gamma source will be collimated to reduce the bandwidth of the source
and to reduce the flux before impinging on a detector 10 m away.

* The flux Is reduced so that a detector would not be saturated and single
photons events can detected, ~1000 photons per interaction event
(assuming an efficiency of detector of 0.1%).
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Gamma source parameters
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Optical Cavities future work

 Optical cavities recirculate
the laser pulses to store

e bunch

power in the cavity Ms

e Can be used to increase the
effective repetition rate of the
laser pulses

Carstens, H. (2016). Enhancement cavities for the generation

of extreme ultraviolet and hard x-ray radiation. Joe Crone, thesis

11



¥ UNIVERSITY OF

% LIVERPOOL

Summary

* |CS Is a method of producing tunable, high energy
monochromatic photons.

* | am currently designing an ICS demonstrator experiment.

| am undertaking a secondment to the Université Paris Saclay
to learn about optical cavities, as this would be a major
iImprovement for an ICS source.
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Any questions?



