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Why use terahertz radiation for electron beam diagnostic?

Advantages of THz Technology

Oscillation period well-matched to
typical bunch duration allowing for
fs resolution electron bunch diagnostics

Inherent timing synchronisation and
reduced timing system complexity

High field strengths possible
(100 MV/m to >GV/m)

Radio Frequency Limitations

Complicated timing systems

Hard to achieve fs bunch diagnostics

Diagnostics Uses

Streaking to transfer longitudinal bunch
information into measurable transverse
change for ultrashort bunches
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Ultrafast Electron Diagnostics: Terahertz Deflectograms

L t=4 Relative injection time scan
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100 keV Sub-Relativistic Experimental Test Bed
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100 keV Sub-Relativistic Experimental Test Bed
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100 keV Sub-Relativistic Experimental Test Bed
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100 keV Simulation Development
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3. E)E(perimental and Simulation
1. Electron gun modelling 2. Waveguide field simulations Results
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Electron Gun Modelling
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Waveguide Simulation: Waveguide Features
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* 44 mm coupler used to transport TE,, mode THz pulse to waveguide

e LSM,; mode waveguide structure is designed to match THz phase velocities with
100 keV electrons (0.548c) at frequency 0.47 THz

Dielectric Lined

Waveguide * Dispersion calculate for individual frequencies according to the LSM,, mode

equations with boundaries defined by the waveguide dimensions
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Waveguide Simulation: Field Map Construction

1. Terahertz pulse profile at entrance, exit and middle of the waveguide
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* Phase advance calculate for individual frequencies
according to the LSM,; mode propagation constants
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* Normalised longitudinal pulse profile calculated and
recorded for each waveguide step in z
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* Transverse THz field distribution calculated from the
LSM,, mode field equations

* All points normalised relative to on design axis Ey field

* Cartesian EM Field components stored as a 3D grid for
each time step and scaled by a maximum field
amplitude at the waveguide entrance
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Simulation Results

Terahertz parameters in waveguide
e 0.33 THz central frequency
e 0.5 THz bandwidth (1/e?)

Bunch Parameters at a waveguide focus :

* 0.1fCcharge
* 240 um transverse diameter (1/e?)

* 1.1 MV/m induced peak field within the cavity * 12 mrad divergence (RMS)

* 1.9 ps bunch duration (FWHM)
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* Electrons stepped through generated field grid using Runge-Kutta 4t order in MATLAB simulation
—  Electron bunches for each relative injection time transported to MCP screen by GPT simulation

* Y projections used to reconstruct final deflectogram
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Experimental Results
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Comparison

* 200 nJ case corresponds well to the 1.1 MV/m
peak field simulation which agrees with
calculated field estimates

Experimental

e 240 um transverse diameter (1/e?) shows
good match to lab results indicating a good
charge match as primarily driven by space
charge broadening vs solenoid focusing

* Divergence features show match to trends in
experimental data with minimal clipping when
matched to a 200nJ THz pulse energy

Simulation

Screen Amplitude (mm)

* Width of key peaks in lab measurements
allows the bunch length to be determined as
1.9 ps FWHM as used in simulations

* Trailing oscillations in the lab measurement
are attributed to coupler dispersion on the
THz pulse — CST simulations to include coupler
effects are currently in development
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Conclusions

»  Where we are:
e Electron gun simulations developed

; THz field map constructed from idealised LSM,, equations and EO measured pulse
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e Successful matching of simulations with experimental results to analyse key features of
the longitudinal electron bunch phase space
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What’s next?

e Continued development of CST simulations to better Retrieved Bunch
understand the effect of coupler dispersion on the '
interaction

 Tomography based analysis using beam transfer maps
derived from simulation

e Alternative PPLN THz sources for narrowband deflection
fields

* THz based compression in our 100 keV experimental test
bed
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