Supermacroparticles

Testing the new model

Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Moment tracking to improve PIC codes for astrophysical plasmas

Alex Warwick Supervisor: Jonathan Gratus

> Lancaster University a.warwick@lancaster.ac.uk

November 15, 2022

Supermacroparticles

Testing the new model 00

A D > A P > A B > A B >

Conclusion 00

Macroparticles

- Often there are too many electrons to solve the Lorentz force for every particle individually
- Instead, particle-in-cell (PIC) codes group particles together into 'macroparticles'
- This allows simulations to be computationally feasible, but small scale detail is lost

Background ○●○ Supermacroparticles

Testing the new model 00

Conclusion 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Vlasov equation

- The Vlasov equation models how particles travel in any system where we can neglect collisions
- In 7 dimensional phase space + time, the Vlasov equation is given by

$$\frac{\partial f}{\partial t} + \sum_{\mu=1}^{3} W^{\mu} \frac{\partial f}{\partial \mathbf{x}^{\mu}} + \sum_{\mu=1}^{3} W^{\mu+3} \frac{\partial f}{\partial \mathbf{u}^{\mu}} = 0$$

where f is the particle distribution, and $\mathbf{u} = \gamma \mathbf{v}$, and

$$W^1 = rac{\mathbf{u}^1}{\gamma}, \quad W^4 = rac{q}{m} \left(\mathbf{E} + rac{\mathbf{u}}{\gamma} imes \mathbf{B}
ight)^1$$

Background	
000	

Supermacroparticles

Testing the new model 00

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Moments

- As well as tracking particle position and velocity, we can track moments
- The moments are taken around the ideal orbit (**X**, **U**), and are integrated over all of position and velocity space
- The dipole moments V^a give the centre of charge
- The quadrupole moments V^{ab} represent the extent of the beam in phase space
- Higher order moments V^{abc} represent the skew and V^{abcd} represents the kurtosis of the beam

$$V^1 = \int \left(\mathbf{x}^1 - \mathbf{X}^1
ight) f d^3 \mathbf{x} d^3 \mathbf{u}, \quad V^4 = \int \left(\mathbf{u}^1 - \mathbf{U}^1
ight) f d^3 \mathbf{x} d^3 \mathbf{u}$$

Supermacroparticles

Testing the new model

Conclusion

Supermacroparticles

- We propose a new method that also transports the moments of the macroparticles
- We call these extended macroparticles 'Supermacroparticles'

Supermacroparticles

Testing the new model

Conclusion

Supermacroparticles

- The amount of information in a supermacroparticle depends on the order of the moments tracked
- A supermacroparticle containing the dipole moments needs twice as much memory to store information
- The increased accuracy of the supermacroparticle approach needs to be balanced against increased computational load

Order of moments tracked	Information known	Number of differential equations to solve	Size relative to macro-particles
Monopole	$\mathbf{X}^{\mu},\mathbf{U}^{\mu}$	6	1
Dipole	$\mathbf{X}^{\mu},\mathbf{U}^{\mu},\ V^{a}$	12	2
Quadrupole	$\mathbf{X}^{\mu},\mathbf{U}^{\mu},\ V^{a},\ V^{ab}$	33	5.5
Octopole	$\mathbf{X}^{\mu},\mathbf{U}^{\mu},\ V^{a},\ V^{ab},\ V^{abc}$	89	14.83
Hexadecapole	$\mathbf{X}^{\mu}, \mathbf{U}^{\mu}, V^{a}, V^{ab}, V^{abc}, V^{abcd}$	215	35.83

Supermacroparticles

Testing the new model

Conclusion

The differential equations for the moments

- The theory to track the moments is defined through geometric distributions¹
- The differential equations for the dipole are given by

$$\dot{V}^{a} = \sum_{b=1}^{6} V^{b} \partial_{b} W^{a} - \sum_{b=1}^{6} \sum_{c=1}^{6} \frac{1}{2} V^{bc} \partial_{b} \partial_{c} W^{a}$$

• The differential equations for the quadrupole are given by

$$\dot{V}^{ab} = \sum_{c=1}^{6} V^{ac} \partial_c W^b + \sum_{c=1}^{6} V^{bc} \partial_c W^a$$

¹J. Gratus and T. Banaszek. *Proc. Roy. Soc. A*, 474(2213):20170652, May 31, 2018. (ロト イヨト イヨト オミト ヨー つへで

Supermacroparticles

Testing the new model

Conclusion 00

The differential equations for the moments

- Quadrupole moments can generate dipole moments
- We can predict the movement in the centre of charge as an elliptical bunch passes through a sextupole magnet

$$\frac{dV^4}{dt} = \frac{q}{m} \frac{SU_z}{2\gamma} V^{22} - \frac{q}{m} \frac{SU_z}{2\gamma} V^{11}, \quad \frac{dV^5}{dt} = \frac{q}{m} \frac{SU_z}{\gamma} V^{12}$$

 The octopole moment will effect the dipole and quadrupole moments

Supermacroparticles

Testing the new model 00

Conclusion

Coordinate transformations

• Other methods can find these differential equations² by differentiating

$$V^1 = \int \left(\mathsf{x}^1 - \mathsf{X}^1
ight) f \, d^3 \mathsf{x} d^3 \mathsf{u}$$

- Our method can find the spacetime coordinate transformations for the moments
- This is important for astrophysical plasmas, where there is a choice of coordinate system
- It is also important for particle accelerator scenarios

Background	Supermacroparticles	Testing the new model	Conclusion
000		●○	00
Testing the co	de		

- To assess the accuracy of the model, is is compared to particle tracking
- Collective effects are not considered

Supermacroparticles

Testing the new model $\circ \bullet$

Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future work

- Implement and test the moment tracking code to model the accretion disk of a black hole
- Find a method to use the moments to deposit the charge and current onto the grid
- Find differential equations for the internal structure of the moments

Supermacroparticles

Testing the new model 00

Conclusion • O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusion

- We propose a new model for PIC codes, transporting the moments of the macroparticles
- The model tracks moments up to second order, but this can be extended to arbitrary order
- Including more moments needs to be balanced against increased computation time and memory usage
- By using our method, we can also find the coordinate transformations for the moments
- We are working on rigorously testing this model in both accelerator and astrophysical scenarios

Supermacroparticles

Testing the new model 00

Conclusion

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Thank you for listening Any questions?