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Introduction and Motivations

e X-rays are used to scan cargo at ports and airports, with the x-rays .
typically being generated using linacs. detector array, decay

Image
processor

alized I%tmslty, ua ( '

time 14 us, pin- 10° P — ;

. . . . photodetector, ~50 us T ‘l

* Typical energies used for scanning are 3-9 MeV, with the energy integration time of i i
. . . . readout electronics + e——t—r
required corresponding to the material type and thickness. Dual 7 S

energies are normally used for material discrimination. mia=== L

= Pulse end-point energy:

* There is now an interest in scanning smaller containers with thinner 8 : f, SNl g Sty ik Mdaad o % 5 e N
. . . . X-rayfanbeam N ' interlaced Linac, pulse duration ~ 4 us, maximum pulse

walls such as aviation cargo Unit Load Devices (ULDs), or cars — Truck rate 400 pps

meaning standard linacs are unsuitable.

Arodzero, Anatoli, et al. "High speed, low dose, intelligent X-ray cargo inspection." 2015 IEEE
. L. . . Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2015.
* In order to obtain sufficient image contrast, lower energy solutions

1000
are required (1-2 MeV).
* This project is focused on the design of one of these systems in _—
collaboration with Rapiscan ®systems. £
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What do these systems look like?

* Typical X-ray scanning system and
components.
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Klystron (RF Power)
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Linac RF Design (previous)

. . 98
« C-band linac (5.712 GHz) for improved e , e agir-——tut
. 0.04 96 lr.i:"p{'
manufacturing costs vs. X-band. o % w . Un
?’;‘0.036 €92 ."“
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* Needed to be robust, reliable, stable and operate oo | g |
well below max operating conditions 50% - 70% %% | Sy w
(peak fields, heating etc.). i w
0.028 82
« Single cell cavity optimized using multi-objective 0-026 80 | | | | | | | | | |
genetic algorithm and spline-based 3D modelling S =P A
methods. AL
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. Frequency 5.712 GHz
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« Thermal considerations made for the single cell, 3 E—
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Beam Capture Optimization (previous) .
* Want to minimize back bombardment as this

can determine the life of the linac.

B e
* Cell lengths determine how much of the beam --

Aperature (mm)
o

is bunch and eventually captured.

Ez (MV/m)

* MO optimization set up using particle tracking ol |
code to optimize the cell lengths. -- a5l :

* Led to a design with high capture efficiency

(90%) and minimized cathode bombardment S 100
(5%). This is achieved by having a short low %}
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Thermal Performance

* Thermal analysis performed using Ansys HFSS and Mechanical. RF losses imported into thermal solver along with heat

transfer coefficient estimates. Thermal deformation used to calculate field errors and frequency shifts. Limits of the linac
explored.
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temperature — "
. . Frequency shift after changing water temperature to L
Field error on axis bring frequency back - no lower than 20 degrees Thermal limit vs. water flow rate (structure
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X-ray Target Design

* Final beam exported and used with Monte Carlo code 107

(G4beamline) to design an X-ray target.

* One copper layer for heat removal and one tungsten layer that
generates large numbers of X-rays due to high Z number.

* Tungsten thicknesses scanned to find optimum X-ray yield for the

design.

e Copper thickness scanned to minimize electron leakage. |
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X-ray Target Thermal Analysis

« Energy deposition inside the target measured.

« Applied estimated power density*(1-radiation yield) to Gaussian volume at the centre of the target.
« Peak power density = 2e6*100e-3 = 200 kW.

. .. Cu thick Pul R Peak E Dut
« Comparison of different copper thicknesses on target heating.
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RF System Design

* In order to create a 3D image, a minimum of 3 linacs are
required.

Frequency 1

CIRCULATORS

Frequency 2

* A method of firing them sequentially was required, with
a larger delay than waveguide alone provides.

* |dea to use 3 frequencies within a single pulse with the
linacs acting as filters for the next frequencies. |
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Conclusions and Future Work

« Designed a full C-band cargo scanning linac with optimized performance for low energy, and
maximum lifetime.

« Full thermal analysis to ensure no operational issues.

Next steps
« Experimental validation of RF system design.
« Thermal analysis of combined linac target system.
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