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Beam Rigidity
Particles travel following a designed circular orbit in ring-type accelerators.

‣ By means of dipole magnets,

‣ Relying on the balance between the centripetal force and Lorentz force.

A Dipole Magnet

Fundamentals

FLorentz = qE + q[v ⇥B]

B.� =
p

q

Fcentripetal =
mv2

⇢
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Taylor Series: f(x) = f(x0) +
(x� x0)

1!
f �(x0) +

(x� x0)2

2!
f ��(x0) + ...

By(x) = By0 +
dBy

dx
x +

1
2!

d2By

dx2
x2 +

1
3!

d3By

dx3
x3 + ... normalise with respect to momentum, p/e

Taylor expansion of the magnetic field B in horizontal axis perpendicular to the axis of 
movement of the beam:

�
�

s

y

Transverse size of the beam is negligible in comparison to the radius of its trajectory 
(accelerator circumference), therefore one can approximate the magnetic field about the particle 
trajectory using Taylor series. 

B(x)
p/e

=
1
�

+ kx +
1
2!

mx2 +
1
3!

ox3 + ...

circular coordinate system

B(x)
p/e

=
B0

B0�
+

g

p/e
x +

1
2!

g0

p/e
x2 +

1
3!

g00

p/e
x3 + ...

Fundamentals
Magnetic guide field
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1
�

=
e

p
Bz0

k =
e

p

dBz

dx

m =
e

p

d2Bz

dx2

o =
e

p

d3Bz

dx3

Number of Magnetic Poles Magnetic Strength Effect

2

(Dipole) Steering

4

(Quadrupole) Focusing

6

(Sextupole) Chromaticity compensation

8

(Octupole) Compensation of field errors

etc. ... ...

B(x)
p/e

=
1
�

+ kx +
1
2!

mx2 +
1
3!

ox3 + ...

Fundamentals
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Magnetic field strength of a dipole magnet

1
�
[m�1] =

0.2998.B0(T )
p(GeV/c)

Normalised field strength

1
�

=
e

p
B

1
⇥

=
e

�mv
B

1
⇤

=
ec

⇥m�cc
B

1
⇥

=
ec

E�
B

p = �mv

v = �c

reminder

B⇥[T.m] =
1
ec

�E B⇥[T.m] =
1

0.2998
�E[GeV ]

Fundamentals
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Focal length of a quadrupole:

k[m�2] =
0.2998.g

p(GeV/c)

f =
1

k · lq

Normalised field strength:

A linearly increasing Lorentz force: Bx = gy By = gx

Quadrupole Magnet

Fundamentals
Magnetic field strength of a quadrupole magnet
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CERN, PS 1959 

CERN, SPS 1976 

Fundamentals
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General approximations for upcoming slides

‣ Calculations are done using the reference particle moving on the 
design orbit unless otherwise is stated.


‣For all other particles must satisfy the below condition to be 
considered within the beam.


‣Only linear terms of x and y components of the magnetic guide 
field will be considered.

x, y << �

Fundamentals
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Radial acceleration

F = m⇥(
d�

dt
)2 = m⇥⇤2

� = constant
d�

dt
= 0

İdeal orbit General trajectory

�� � + x

F = m
d2

dt2
(x + �)� mv2

x + �
= eByv

{

d2

dt2
(x + �) =

d2

dt2
x

{

x � mm � � m

1
x + �

⇥ 1
�
(1� x

�
)

m
d2x

dt2
� mv2

�
(1� x

�
) = eByv

ar =
d2⇥

dt2
� ⇥(

d�

dt
)2

�
�

s

y

Circular coordinate system

F = mv2/⇢ = m⇢!2

Equation of motion
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‣Linear terms of the guide field By = B0 + x
�By

�x

m
d2x

dt2
� mv2

�
(1� x

�
) = ev(B0 + x

⇥By

⇥x
)

‣Change of independent variable: t -> s
dx

dt
=

dx

ds

ds

dt
d2x

dt2
=

d

dt
(
dx

ds

ds

dt
) =

d

ds
(
dx

ds

ds

dt
)
ds

dt

d2x

dt2
= x��v2 +

dx

ds

dv

ds
v\

:m
d2x

dt2
� v2

�
(1� x

�
) =

evB0

m
+

evxg

m

x��v2 � v2

�
(1� x

�
) =

evB0

m
+

evxg

m :v^2

x�� � 1
�
(1� x

�
) =

eB0

mv
+

exg

mv
mv=p

g/(p/e)=kx�� � 1
�

+
x

�2
=

B0

p/e
+

xg

p/e

x�� + x(
1
�2
� k) = 0

Equation of motion

0, no acceleration
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m
d2x

dt2
� mv2

�
(1� x

�
) = eByv

‣Radial accelerations on and off the orbit,

‣Consider linear terms of the guide field,

‣Change independent variable, 

‣Normalise to particle momentum.

x�� + x(
1
�2
� k) = 0

Note: There is a restoring force provided by dipole magnets on a 
ring in the absence of quadrupole magnets: ”Weak focusing”.

k = 0, x�� = � 1
�2

x

Equation of Motion

Previously,
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Equation of Motion

x�� + x(
1
�2
� k) = 0

Equation for the vertical motion

1
�2

= 0

k ⇥ �k

no dipoles...in general...

quad field changes sign

y�� + ky = 0

m
d2x

dt2
� mv2

�
(1� x

�
) = eByv

‣Radial accelerations on and off the orbit,

‣Consider linear terms of the guide field,

‣Change independent variable, 

‣Normalise to particle momentum.

Previously,
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x�� + x(
1
�2
� k) = 0

Definition:

In the horizontal plane: K =
1
�2
� k

K = k

x�� �Kx = 0

Equation of motion of an harmonic oscillator!

Equation of Motion

In the vertical plane:
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K > 0Focusing

x(s) = x0cos(
�

Ks) +
x�

0�
K

sin(
�

Ks)

x�(s) = �x0

⇥
Ksin(

⇥
Ks) + x�

0cos(
⇥

Ks)

M =

�
cos

⇤
|K|s 1⇥

|K|
sin

⇤
|K|s

�
⇤

|K|sin
⇤

|K|s cos
⇤

|K|s

⇥

s = s0 s = s1

General solution of the harmonic oscillator:

�
x
x�

⇥

s1

= M �
�

x
x�

⇥

s0

One can calculate (x1,x1’) points for a particle at position S1 using that particle’s initial coordinates 
(x0,x0’) at S0 and the “transfer matrix” between S0 and S1.

Equation of Motion
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K < 0Defocusing

s = s0 s = s1

M =

�
cos

⇤
|K|s 1⇥

|K|
sin

⇤
|K|s

�
⇤

|K|sin
⇤

|K|s cos
⇤

|K|s

⇥

�
x
x�

⇥

s1

= M �
�

x
x�

⇥

s0

Equation of Motion
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cos(
p

|K|s) = 1� s2|K|
2

+ ...

�
p

|K|sin(
p

|K|s) = �s|K|+ s3|K|2

6
� ...

Thin lens approximation

For practicality…

f =
1

klq
>> lq

Generally a magnet length is an order of magnitude smaller than its focal 
length.

lq � 0

klq = constant

cos(
p

|K|s) = 1� s2|K|
2

+ ...

1p
|K|

sin(
p

|K|s) = s� s3|K|
6

( (
…

https://en.wikipedia.org/wiki/Taylor_series

Reminder
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matrix of a 

defocusing quadrupole

MQF =
�

1 0
1
f 1

⇥

matrix of a 

focusing quadrupole

MQD =
�

1 0
� 1

f 1

⇥

For practicality…

f =
1

klq
>> lq

Generally a magnet length is an order of magnitude smaller than its focal 
length.

lq � 0

klq = constant
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K = 0

Transfer matrix for a drift space.

M =
�

1 s
0 1

⇥

M =

�
cos

⇤
|K|s 1⇥

|K|
sin

⇤
|K|s

�
⇤

|K|sin
⇤

|K|s cos
⇤

|K|s

⇥

If there is no magnets along the 
trajectory… lim

k!0

sin
p

|k|xp
|k|

= x

Equation of Motion
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Beam transfer through lattice elements

Transfer matrix for a section of many elements is found by multiplying 
the transfer matrices of individual elements in this section.

Mtotal = MQF � MD � MBend � MD � MQD � MD � MBend � MD� ...
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Beam transfer through lattice elements

Symmetric	transfer	matrix	with	respect	to	the	centre	of	
quadrupole	magnets.

MFODO = MHQF ⋅ MDrift ⋅ MQD ⋅ MDrift ⋅ MHQF

MHQF = (
1 0

− 1
2f 1) MDrift = (1 L

0 1) MQD = (
1 0
1
f 1)

MFODO =
1 − L2

2f 2 2L(1 + L
2f )

− L
2f 2 (1 − L

2f ) 1 − L2

2f 2
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George William Hill (1838 - 1914) Mathematician - Astronomer  

http://www-history.mcs.st-andrews.ac.uk/Biographies/Hill.html

x��(s)� k(s)x(s) = 0

Hill’s Equation

x(s) =
�

⇥
�

�(s)cos(⌅(s) + ⇤)

General Solution

Equation of motion under periodic focusing conditions…

Hill’s Equation

k(s) indicates that the 
focusing properties 
change as a function of 
position along the lattice.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Hill.html
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x�(s) = �
⇥

⇤�
⇥(s)

[�(s)cos(⇧(s) + ⌅) + sin(⇧(s) + ⌅)]x(s) =
�

⇥
�

�(s)cos(⌅(s) + ⇤)

cos2(⌅(s) + ⇤) =
x2(s)
⇥�(s)

cos(⌅(s) + ⇤) =
x(s)

�
⇥
�

�(s)
sin(⇧(s) + ⌅) = � ⇥x� + x��

⇥(s)
⇥

⇤

sin2(⇧(s) + ⌅) =
1
⇤⇥

(⇥2(s)x�2(s) + 2⇥(s)�(s)x�(s)x(s) + �2(s)x2(s))

sin2(⇥(s) + �) + cos2(⇥(s) + �) = 1

⌅ = ⇤(s)x(s)2 + 2�(s)x(s)x�(s) + ⇥(s)x�(s)2

�(s) = �1
2
⇥�(s) ⇤(s) =

1 + �2(s)
⇥(s)

(1)

(2)

(3)

(4)

(5)

Note:

Phase Space

Parametric representation of beam emittance in terms of Twiss parameters, α, β, γ.
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The area that the beam occupies in the phase space is a conserved quantity. 

‣The shape and orientation of this ellipse is determined by the Twiss 
parametes, α, β, γ.

Max. amplitude

‣A large beta function might indicate a 
large beam radius and a small divergence 
and vice verse.

‣In the centre of a quadrupole,

‣Envelope of this area in x-x’ space is a an ellipse parametrised as a function of s coordinate. 

⇥ = maximum, � = 0� x� = 0

⌅ = ⇤(s)x2(s) + 2�(s)x(s)x�(s) + ⇥(s)x�2(s)

x

x�

�
⇥/�

�
⇥/�

.
.

.
.

��
�

⇤/⇥
�

⇥�(      ,            )

��
�

⇤/⇥
�

⇥�(      ,            )

Conservation of the Phase Space
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Normalised emittance:

Liouville’s Theorem: 

A f
und

am
ent

al 
pro

per
ty 

of 
the

 pa
rtic

les
 

enc
lose

d b
y x

-x’
 sp

ace
.


Doe
s n

ot 
cha

nge
! x

x�

�
⇥/�

�
⇥/�

.
.

.
.

��
�

⇤/⇥
�

⇥�(      ,            )

��
�

⇤/⇥
�

⇥�(      ,            )

✏⇤ = (�r�r)✏

Conservation of the Phase Space

‣Envelope of this area in x-x’ space is a an ellipse parametrised as a function of s coordinate. 

⌅ = ⇤(s)x2(s) + 2�(s)x(s)x�(s) + ⇥(s)x�2(s)

The area that the beam occupies in the phase space is a conserved quantity. 
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Beta function is a periodic function defined by the properties of the magnetic lattice across the 
accelerator.

�(s + L) = �(s)

courtesy B. Holzer

Betatron Function

Transverse beam envelope oscillations, x(s), about the ideal beam orbit is called “Betatron 
oscillations”.

The matrix formalism given in earlier slides could not provide information about the 
collective behaviour of the beam particles.
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⇥(s) =
� s

0

ds

�(s)
Phase advance between “0” and “s”

Q =
1
2⇥

�
ds

�(s)

Number of betatron oscillations per a full turn 
around the machine is called the “tune”  of the 
machine.

Betatron Tune

Betatron tune is important to be able to define the particle movement in the transverse plane. In an 
ideal accelerator (ideal magnets and perfect alignment) and for a monochromatic beam, betatron tune 
can be at any value depending on the quadrupole strengths in the lattice. However, in reality, small 
errors in magnetic fields and the alignment of the elements are unavoidable. Therefore, in order to 
prevent the instabilities caused by such errors betatron tune of a machine has to be selected very 
carefully.

A simple example case: Let’s consider a ring working at an integer tune and having dipoles with 
certain magnet field errors. In this case particles will arrive at the perturbation region with the same 
phase relation at every turn. Therefore, the kick due to the field error will add up systematically at 
every turn and the amplitude of the betatron oscillation will increase until the particles are lost on 
the machine apertures.
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‣A horizontal and a vertical tune value are defined for accelerator rings: Qx and Qy.


‣For high order magnets, the field strength in one plane is related to the field strength in the 
other transverse plane. Hence, the betatron oscillations are coupled in these two planes.

Tune Resonances

Source Field Resonance Condition
Dipole Q=p

Quadrupole 2Q=p
Sextupole 3Q=p
Octupole 4Q=p

etc. …

pQx + qQy = m

‣Qx and Qy pair defined for an accelerator is called the working point of that machine.


‣As the strength of a resonance significantly decreases by its degree, generally, only resonances up to 
5th degree are considered.

Betatron Tune

m, p, q: integer numbers

‣The degree of the resonance is given as |p| + |q|.

‣Optical resonances and the multipole fields that caused them.
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Tune combinations that cause unwanted 
resonances can be shown in a tune diagram. The 
area occupied in the tune space by a beam is 
called the “tune footprint” of that beam. 


Performance of an accelerator and the particle 
background in a collider are related to the tune 
footprint of that accelerator.

CERN-SL-2000-037-DI
https://jwenning.web.cern.ch/jwenning/documents/lepmain_sl.pdf

pQx + qQy = m

Resonance Diagram

Betatron Tune

m, p, q: integer numbers

https://jwenning.web.cern.ch/jwenning/documents/lepmain_sl.pdf
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From page 11: x�� � 1
�
(1� x

�
) =

eB0

mv
+

exg

mv p = p0 + �p

Repeat the calculation taking into account a small momentum error:

�p << p0 ⇤
1

p0 + �p
⇥ 1

p0
� �p

p2
0

x�� � 1
�

+
x

�2
⇥ eB0

p0
� �p

p2
0

eB0 +
exg

p0
� xeg

�p

p2
0

�1
�

k � x � 0

} } }

(x,�p� small)

x�� + x(
1
�2
� k) =

�p

p0

1
�

Inhomogeneous equation of motion

Particle Trajectory for off momentum particles
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Solution to the inhomogeneous equation of motion:

x(s) = x�(s) + D(s) · �p

p

�p/p �= 0

x�� + x(
1
�2
� k) =

�p

p0

1
�

Inhomogeneous equation of motion

�
�

s

y

‣ Let’s investigate the case where the 
momentum spread of the beam is nonzero.

Particle Trajectory for off momentum particles
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‣ The orbit of an ideal particle is defined for dp/p = 0.


‣ The orbit of an arbitrary particle is defined by considering an additional term due to the momentum 
spread of the beam.


‣ Therefore, D(s) defines an orbit according to the focusing properties of the lattice. 


‣ Dispersion is caused by the dipole magnets. 


‣ And it needs to be zero, for example, at the interaction point of a collider.

Matrix Formalism

x(s) = C(s) · x0 + S(s) · x�
0 + D(s) · �p/p

x(s) = x�(s) + D(s) · �p/p

�
x
x�

⇥

s

=
�

C S
C � S�

⇥ �
x
x�

⇥

0

+
�p

p

�
D
D�

⇥

or
�

⇤
x
x�

�p/p

⇥

⌅

s

=

�

⇤
C S D
C � S� D�

0 0 1

⇥

⌅ ·

�

⇤
x
x�

�p/p

⇥

⌅

0

Particle Trajectory for off momentum particles

Inhomogeneous equation of motion
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⇥l�
L

= �cp
�p

p

It relates the particles momentum spread to the lengthening of the orbit 
through the dispersion function of the beam.

Orbit lengthening for off-momentum particles.

Momentum compaction factor

Momentum Compaction

�cp =
1
L

�
D(s)
⇥(s)

ds

Particle Trajectory for off momentum particles
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Q� = � 1
4⇥

�
K(s)�(s)ds

�Q =
� s0+l

s0

�K(s)�(s)ds

4⇥

‣ Quadrupole errors cause tune shift

‣ ΔQ, is proportional to the beta function in a quadrupole.

‣ Chromaticity is a quantity which relates the tune shift and 
momentum spread.

�Q = Q� �p

p

Quadrupole Errors and Chromaticity

Momentum Compaction

Particle Trajectory for off momentum particles

Q′ = ∓
1

4π ∮ β(s) [k(s) + m(s)D(s)] ds

Total chromaticity in a lattice including the 
contribution from sextupoles.
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Calculation of the beam size at CERN’s SPS extraction point before the beam is 
extracted into the LHC.
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Location=~3969.26 m ("@QF.41610")

βx = 106.6 m

Dx = -0.44 m

εx = 1x10-8 m

Δp/p = 0.287x10-3 

Calculation of the beam size at CERN’s SPS extraction point before the beam is 
extracted into the LHC.

Exercise 
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Location=~3969.26 m ("@QF.41610")

βx = 106.6 m

Dx = -0.44 m

εx = 1x10-8 m

Δp/p = 0.287x10-3 

⇤x,y = ⌅
p

⇥x,y�x,y + ⌅ |Dx
�p

p
| + c

⇤x,y =
p

⇥x,y�x,y + |Dx
�p

p
|

Quadratic Sum Linear Sum

Tolerances

⇤x,y =

s

⇥x,y�x,y + (Dx
�p

p
)2

Consider the error of τ = 1.1 and a mechanical tolerance of c = 100 μm and calculate 
the beam size as linear and quadratic sum.

Exercise 

Calculation of the beam size at CERN’s SPS extraction point before the beam is 
extracted into the LHC.


