
Computational lattice design

Numerical methods II

Dr Robert Apsimon
r.apsimon@lancaster.ac.uk

mailto:r.apsimon@lancaster.ac.uk


In this lecture

• We will now look at the considerations for writing your own tracking code.

• While there are plenty of tracking codes available, it is good to understand 
how to write your own.

– Aside from giving a good conceptual understanding, codes written by
someone else don’t always do exactly what you want it to do…

• ASTRA changes your coordinate system if you use dipoles

• MAD/MADX doesn’t allow you to import field maps

• PARMILA/PARMELA is difficult to use and computationally limited

• …



General strategy for particle tracking

1. Import/generate your particle distribution

2. Import/generate your field map or beam line

3. Integrate your trajectory along the field map/beam line

• Conceptually, writing a tracking code is much easier than it sounds

– There are, of course, plenty of little fiddly bits, but nothing too strenuous!



Generating a particle distribution

• You should all be familiar with the Twiss
parameters.

• From this, the beam ellipse can be written
as:

𝛾𝑥2 + 2𝛼𝑥𝑥′ + 𝛽𝑥′
2
= 𝜀𝑔

• Where 𝜀𝑔 =
𝜀𝑁

𝛽𝛾 𝑟𝑒𝑙

• Generating a random particle distribution for a rotated ellipse like this is 
difficult, what would be better is to generate a particle distribution for a 
circle.

– This is essentially what we do. We define the particle distribution in
normalised phase space coordinates and transform it into actual phase 
space coordinates.



Generating a particle distribution

• If we take the transformation:

𝑥
𝑥′

=
𝛽 0

−
𝛼

𝛽

1

𝛽

𝑋𝑁
𝑋𝑁
′

• Then the beam ellipse:

𝛾𝑥2 + 2𝛼𝑥𝑥′ + 𝛽𝑥′
2
= 𝜀𝑔

Turns into:

𝑋𝑁
2 + 𝑋𝑁

′ 2 = 𝜀𝑔

• So now we can generate our normalised phase space distribution easily and 
the real phase space coordinates are given as:

𝑥 = 𝛽𝑋𝑁

𝑥′ =
−𝛼𝑋𝑁 + 𝑋𝑁

′

𝛽



Generating a particle distribution

• There are many different particle
distributions we could generate

– Most commonly a Gaussian

– Could do uniform distribution

• This is slightly more complicated

• Gaussian:

– Let 𝑋𝑁 and 𝑋𝑁
′ be Gaussian distributed arrays of random numbers with a 

standard deviation of 𝜀𝑔

𝑥 = 𝛽𝑋𝑁

𝑥′ =
−𝛼𝑋𝑁 + 𝑋𝑁

′

𝛽



Generating a particle distribution

• Uniform:

– Let m and n be uniformly distributed random in the range of [0, 1]
𝑟 = 𝜀𝑔𝑚

𝜃 = 2𝜋𝑛

– Then
𝑋𝑁 = 𝑟 cos 𝜃
𝑋𝑁
′ = 𝑟 sin 𝜃

– Why do we need sqrt(m) for r?



Generating a particle distribution

• We can in fact create any distribution we want with just 3 arrays uniformly 
distributed random numbers (m, n, p):

– Assume our required distribution is a function 𝑓 𝑥, 𝑥′

m is a random number in the range 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥

n is a random number in the range 𝑥𝑚𝑖𝑛
′ , 𝑥𝑚𝑎𝑥

′

p is a random number in the range 0, 1

– If 𝑝 ≤
𝑓 𝑚,𝑛

max 𝑓 𝑥,𝑥′
, then 𝑥 = 𝑚, 𝑥′ = 𝑛 and this is added to the particle 

distribution

– Otherwise m, n, p are rejected and we generate new values for m, n, p

– We continue this algorithm until we have enough particles in our 
distribution.



Generating/importing a field map

• A field map can be described in different ways, depending on what you need.

– If an analytical field distribution exists and can be easily described then a 
field map can be considered as a function:

• E.g. quadrupoles, dipoles…

– For more complicated systems, we need to define the electric and 
magnetic fields at specific points

• This can be 1-, 2-, 3- or even 4D

–4D is very rare and much more difficult as the amount of data grows
rapidly with the number of dimensions!

• The obvious downside with discrete field maps is that you lose 
accuracy between grid points.



Generating/importing a field map

• Formulaic field maps

– Most tracking codes have commands to class common classes of magnetic
and electric elements:

• Dipole, quadrupole, multipole, kickers…

• As we saw in the previous lecture, if we have a formula to describe the 
magnetic and electric fields, we can easily define an equation of 
motion (which we can either solve analytically or numerically):

ሷ𝑥
ሷ𝑦
ሷ𝑧
=

𝑞

𝛾𝑚

𝐸𝑥 𝑥, 𝑦, 𝑧, 𝑡 + 𝑣𝑦𝐵𝑧 𝑥, 𝑦, 𝑧, 𝑡 − 𝑣𝑧𝐵𝑦 𝑥, 𝑦, 𝑧, 𝑡

𝐸𝑦 𝑥, 𝑦, 𝑧, 𝑡 − 𝑣𝑥𝐵𝑧 𝑥, 𝑦, 𝑧, 𝑡 + 𝑣𝑧𝐵𝑥 𝑥, 𝑦, 𝑧, 𝑡

𝐸𝑧 𝑥, 𝑦, 𝑧, 𝑡 + 𝑣𝑥𝐵𝑦 𝑥, 𝑦, 𝑧, 𝑡 − 𝑣𝑦𝐵𝑥 𝑥, 𝑦, 𝑧, 𝑡

• Later we will come back to this equation



Generating/importing a field map

• Discrete field maps

– Most codes will also allow you to import a field map as a text file

• Each code will have its own format for the text file, but they all require 
the same information:

–Positions in x, y, z

–Real and imaginary components of the field in x, y and z

–Usually the electric (E) and magnetic (H) fields are imported as 
separate files

(Recall 𝐵 = 4𝜋 × 10−7𝐻)

– Since discrete field maps miss information between the grid points, we
need to interpolate between points in general.



Interpolation of a field map

• As we only have limited data, we need to find a way
to estimate the field between points:

– Linear interpolation

• Simplest approach, good for slowly varying fields

𝐸 𝑥 = 1 −
𝛿

𝑑𝑥
𝐸𝑛 +

𝛿

𝑑𝑥
𝐸 𝑛+1

– Polynomial interpolation

• Similar to linear interpolation, but requires more data points

• Better accuracy, but more computationally expensive

– Spline fitting

• High accuracy, but computationally expensive, especially for 3D 
interpolation

• Most commonly Bezier curves (plenty of information about these
online)

En E(n+1)

dx

𝛿



Bezier curves

• Bezier curves are at the core of almost all 
spline fitting.

– Let’s start by thinking about a 2nd order
Bezier curve:

– Define 3 points, A, B and C

– Draw a line from A to B (L1), and B to C (L2)

– We will define a parameter t, such that 
when it is zero, we are at A on L1 and B on 
L2.

– Now draw a line (L3) from L1(t) to L2(t)

– The point L3(t) along our new line describes
our 2nd order Bezier curve



Bezier curves

• Writing this all out as equations:
𝑥𝐵 𝑡 = 1 − 𝑡 2𝑥0 + 2𝑡 1 − 𝑡 𝑥1 + 𝑡2𝑥2
𝑦𝐵 𝑡 = 1 − 𝑡 2𝑦0 + 2𝑡 1 − 𝑡 𝑦1 + 𝑡2𝑦2

• Now increase the order of the Bezier curve, 
we need more points, so an nth order Bezier 
curve needs n+1 points

– We use these to generate n generations of 
Bezier curves (1st order curves are lines!).

– The functional form of the nth order Bezier 
curve forms a binomial expansion:

𝑃𝐵 𝑡 = ෍

𝑘=0

𝑛
𝑛
𝑘

1 − 𝑡 𝑛−𝑘𝑡𝑘𝑃𝑘



Bezier curves

• Writing this all out as equations:
𝑥𝐵 𝑡 = 1 − 𝑡 2𝑥0 + 2𝑡 1 − 𝑡 𝑥1 + 𝑡2𝑥2
𝑦𝐵 𝑡 = 1 − 𝑡 2𝑦0 + 2𝑡 1 − 𝑡 𝑦1 + 𝑡2𝑦2

• While Bezier curves may have a simple looking 
form, they can describe very complicated 
shapes in a computationally efficient manner.

– However, a Bezier curve can never perfectly 
describe a circle (I’ll leave that as an 
exercise for you to find out why)

• As we move to higher and higher dimensions,
any spline fitting method becomes
computationally expensive and something to 
note for any tracking code.



Integrating trajectories

• So far, we have looked at:

– Generating particle distributions

– Field maps and interpolation

• Now we need to move on to figuring out the particles’ trajectories through 
our system.

– Recall from a few slides ago, we said that the equation of motion we get 
is:

ሷ𝑥
ሷ𝑦
ሷ𝑧
=

𝑞

𝛾𝑚

𝐸𝑥 𝑥, 𝑦, 𝑧, 𝑡 + 𝑣𝑦𝐵𝑧 𝑥, 𝑦, 𝑧, 𝑡 − 𝑣𝑧𝐵𝑦 𝑥, 𝑦, 𝑧, 𝑡

𝐸𝑦 𝑥, 𝑦, 𝑧, 𝑡 − 𝑣𝑥𝐵𝑧 𝑥, 𝑦, 𝑧, 𝑡 + 𝑣𝑧𝐵𝑥 𝑥, 𝑦, 𝑧, 𝑡

𝐸𝑧 𝑥, 𝑦, 𝑧, 𝑡 + 𝑣𝑥𝐵𝑦 𝑥, 𝑦, 𝑧, 𝑡 − 𝑣𝑦𝐵𝑥 𝑥, 𝑦, 𝑧, 𝑡

– While this is true, for relativistic systems, this is not the most appropriate 
method.



Integrating trajectories

ሷ𝑥
ሷ𝑦
ሷ𝑧
=

𝑞

𝛾𝑚

𝐸𝑥 𝑥, 𝑦, 𝑧, 𝑡 + 𝑣𝑦𝐵𝑧 𝑥, 𝑦, 𝑧, 𝑡 − 𝑣𝑧𝐵𝑦 𝑥, 𝑦, 𝑧, 𝑡

𝐸𝑦 𝑥, 𝑦, 𝑧, 𝑡 − 𝑣𝑥𝐵𝑧 𝑥, 𝑦, 𝑧, 𝑡 + 𝑣𝑧𝐵𝑥 𝑥, 𝑦, 𝑧, 𝑡

𝐸𝑧 𝑥, 𝑦, 𝑧, 𝑡 + 𝑣𝑥𝐵𝑦 𝑥, 𝑦, 𝑧, 𝑡 − 𝑣𝑦𝐵𝑥 𝑥, 𝑦, 𝑧, 𝑡

• This method relies on us using position and velocity, but in relativistic 
systems, 𝑣 ≤ 𝑐

– Therefore, as we accelerate our particles, the increase in velocity gets 
smaller.

• A numerical error could push the velocity over the speed of light and 
the tracking code would break down.

– If we remember the Lorentz force:

𝐹 = 𝑞 𝐸 + 𝑣 × 𝐵 =
𝑑𝑝

𝑑𝑡
• Although the velocity change varies, for a given force, the momentum 

increases linearly with time!



Integrating trajectories

• The first thing we need to do is describe all velocity-related variables in terms 
of momentum. It’s useful to remember:

𝑝𝑐 = 𝛽𝛾𝑚𝑐2

𝑝𝑘𝑐 = 𝛽𝑘𝛾𝑚𝑐
2

𝐸 = 𝛾𝑚𝑐2

𝐸2 − 𝑝2𝑐2 = 𝑚2𝑐4

• Where 𝑝𝑘 means the momentum in the k-direction

• Note that in here 𝑐 = 1 if we are working in natural units (elsewhere in the 
tracking code it won’t be, which is a common cause of errors that even I fall 
foul of!).

– To avoid this confusion, we will ignore the c’s and rewrite these as
𝑝 = 𝛽𝛾𝑚
𝑝𝑘 = 𝛽𝑘𝛾𝑚
𝐸 = 𝛾𝑚
𝐸2 − 𝑝2 = 𝑚2



Integrating trajectories

𝑝 = 𝛽𝛾𝑚
𝑝𝑘 = 𝛽𝑘𝛾𝑚
𝐸 = 𝛾𝑚
𝐸2 − 𝑝2 = 𝑚2

• We will now use these to help us write velocity in terms of momentum:

𝑣𝑘 =
𝑝𝑘𝑐

𝐸
=

𝑝𝑘𝑐

𝑝2 +𝑚2

• Note: in this equation, 𝒄 = 𝟑 × 𝟏𝟎𝟖 which is subtle but very important!



Integrating trajectories

• Finally we can rewrite out equation of motion into a more appropriate form:
𝑑𝒑

𝑑𝑡
= 𝑞 𝑬 + 𝒗 × 𝑩 = 𝑞 𝑬 𝑥, 𝑦, 𝑧, 𝑡 +

𝑐

𝑝2 +𝑚2
𝒑 × 𝑩 𝑥, 𝑦, 𝑧, 𝑡

• The charge is given in units of electrons, so for electrons or protons, we can
take it to be -1 or +1 respectively, allowing us to simplify our equation to:

ሶ𝑝𝑥
ሶ𝑝𝑦
ሶ𝑝𝑧

=

𝐸𝑥 +
𝑐

𝑝2 +𝑚2
𝑝𝑦𝐵𝑧 − 𝑝𝑧𝐵𝑦

𝐸𝑦 +
𝑐

𝑝2 +𝑚2
𝑝𝑧𝐵𝑥 − 𝑝𝑥𝐵𝑧

𝐸𝑥 +
𝑐

𝑝2 +𝑚2
𝑝𝑥𝐵𝑦 − 𝑝𝑦𝐵𝑥

• For simplicity, I will just use the vector form of this equation from now on, 
but please not that in reality is a set of 3 coupled differential equations.



Integrating trajectories – simplest integrator

Δ𝒑

Δ𝑡
≈ ሶ𝒑 = 𝑬 +

𝑐

𝑝2 +𝑚2
𝒑 × 𝑩

• We will assume that we are dealing with a system that is either DC (e.g.
dipole magnet) or single frequency (e.g. RF cavity), so we can pull out the 
time dependence as:

Δ𝒑

Δ𝑡
≈ 𝑬 +

𝑐

𝑝2 +𝑚2
𝒑 × 𝑩 𝑒𝑖𝜔𝑡

• We will use our field maps and interpolation to estimate the electric and 

magnetic fields (usually the magnetic field is given as 𝐻 =
𝐵

𝜇0
⇒

𝐵 = 4𝜋 × 10−7𝐻)
𝑝 𝑛+1 − 𝑝𝑛

𝛿𝑡
≈ 𝐸𝑛 +

𝑐

𝑝𝑛
2 +𝑚2

𝑝𝑛 × 𝐵𝑛 𝑒𝑖𝜔𝑡𝑛



Integrating trajectories – simplest integrator

𝒑 𝑛+1 − 𝒑𝑛
𝛿𝑡

≈ 𝑬𝑛 +
𝑐

𝑝𝑛
2 +𝑚2

𝒑𝑛 × 𝑩𝑛 𝑒𝑖𝜔𝑡𝑛

• Rearranging, this gives us:

𝒑 𝑛+1 ≈ 𝒑𝑛 + 𝛿𝑡 𝑬𝑛 +
𝑐

𝑝𝑛
2 +𝑚2

𝒑𝑛 × 𝑩𝑛 𝑒𝑖𝜔𝑡𝑛 = 𝒑𝑛 + 𝑒𝑖𝜔𝑡𝑛𝑭𝑛𝛿𝑡

𝒗𝑛 =
𝒑𝑛𝑐

𝑝𝑛
2 +𝑚2

𝒗 𝑛+1 =
𝒑 𝑛+1 𝑐

𝑝 𝑛+1
2 +𝑚2

𝒙 𝑛+1 = 𝒙𝑛 +
𝒗𝑛 + 𝒗 𝑛+1

2
𝛿𝑡

• This method is called an Euler integrator

• Note: 𝛿𝑡 is called the timestep



Integration methods

• Integrator order: this refers to order of the numerical error

– E.g. an Euler integrator is a 1st order integrator, so it has errors that are 2nd

order or higher.

– Some integrators can limit the maximum error to a certain order, while 
others allow errors to propagate and grow over time.

• Symplectic integrators: the total energy of a system is conserved, which in 
turn conserves the phase space emittance

– Non-symplectic integrators can lose or gain energy over many iterations, 
but this is only really an issue if we want to track particles for very long 
times.

• If we want to improve our tracking accuracy, we can:

– Reduce the timestep

– Increase the integrator order



Most common integrators

• Euler integrator:

– Very basic integrator, but very poor accuracy, almost never used

• 4th order Runge-Kutta integrator:

– Quite easy to set up, good accuracy, almost always the method of choice

– Non-symplectic, so not appropriate for long-term simulations

– RK integrators can come in higher orders, but RK4 is most popular.

• Leap frog algorithms:

– Describes a class of methods of different order, can be symplectic or not.

– Position is evaluated at the timesteps, velocity is between timesteps.

– Velocity calculations prone to divergences, which is bad for relativistic
applications!

– The Boris “push” algorithm is a leap frog-like algorithm that’s second order and 
can overcome this velocity divergence issue (a popular choice)



RK4 – 4th order Runge-Kutta

• The algorithm works for equations of the form:
𝑑𝑦

𝑑𝑡
= 𝑓 𝑡, 𝑦 , 𝑦 𝑡0 = 𝑦0

• We get:

𝑦𝑛+1 = 𝑦𝑛 +
𝛿𝑡

6
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

• Where
𝑘1 = 𝑓 𝑡𝑛, 𝑦𝑛

𝑘2 = 𝑓 𝑡𝑛 +
𝛿𝑡

2
, 𝑦𝑛 + 𝑘1

𝛿𝑡

2

𝑘3 = 𝑓 𝑡𝑛 +
𝛿𝑡

2
, 𝑦𝑛 + 𝑘2

𝛿𝑡

2

𝑘4 = 𝑓 𝑡𝑛 + 𝛿𝑡, 𝑦𝑛 + 𝑘3𝛿𝑡



RK4 – 4th order Runge-Kutta

• For our case, we have a second order differential equation, so we can write:
𝑑𝑝

𝑑𝑡
= 𝑓 𝑡, 𝑝 = 𝑬 +

𝑐

𝑝2 +𝑚2
𝒑 × 𝑩

𝑑𝑥

𝑑𝑡
= 𝑔 𝑡, 𝑥 =

𝑝𝑥𝑐

𝑝2 +𝑚2
= 𝑣𝑥

• If velocity doesn’t change much (as we are relativistic), then we can solve the 
second equation with a simple integrator, like Euler, no need for RK4.

– Hard to write
𝑑𝑥

𝑑𝑡
as an explicit function of x, so RK4 isn’t much better than 

Euler in this case.


