Lancaster E=E -
University ¢

Computational lattice design

Numerical methods Il

Dr Robert Apsimon
r.apsimon@Ilancaster.ac.uk

mailto:r.apsimon@lancaster.ac.uk

Lancastere

In this lecture University -

* We will now look at the considerations for writing your own tracking code.

* While there are plenty of tracking codes available, it is good to understand
how to write your own.

— Aside from giving a good conceptual understanding, codes written by
someone else don’t always do exactly what you want it to do...

* ASTRA changes your coordinate system if you use dipoles
* MAD/MADX doesn’t allow you to import field maps
 PARMILA/PARMELA is difficult to use and computationally limited

_ _ Lancaster E=3
General strategy for particle tracking University

1. Import/generate your particle distribution
2. Import/generate your field map or beam line
3. Integrate your trajectory along the field map/beam line

* Conceptually, writing a tracking code is much easier than it sounds
— There are, of course, plenty of little fiddly bits, but nothing too strenuous!

Generating a particle distribution

* You should all be familiar with the Twiss
parameters.

* From this, the beam ellipse can be written
as:

2 2 _
yx© + 2axx’ + fx'" = g,

EN

(BY)ret

* Where g, =

Lancaster E=3
University = °

v><

* Generating a random particle distribution for a rotated ellipse like this is
difficult, what would be better is to generate a particle distribution for a

circle.

— This is essentially what we do. We define the particle distribution in

normalised phase space coordinates and transform it into actual phase

space coordinates.

2a
XA —Oé\/_f/”r /tan Zp' = ~— 3
oo ~ay/e/3

. _ o _ Lancaster E=3
Generating a particle distribution University

2c
¥ =B

* |If we take the transformation:
(x) _ \/E 0 Xy
x' e L)\xs
 Then the beam ellipse:
yx? + 2axx’ + Bx'* = &g

Turns into:
X2+ X% = &g

XA —aVe/y tan2p=

* So now we can generate our normalised phase space distribution easily and
the real phase space coordinates are given as:

x=\/EXN

(—QXN + XIIV)

VB

x' =

. _ o _ Lancaster E=3
Generating a particle distribution University

* There are many different particle A T ~— 8
distributions we could generate W

— Most commonly a Gaussian
— Could do uniform distribution

* This is slightly more complicated

e (@Gaussian:

— Let Xy and Xy be Gaussian distributed arr‘éys of random numbers with a
standard deviation of /¢

g
X =\/FXN
(—aXy + Xy)

VB

x' =

Lancaster E=3

Generating a particle distribution University S

e Uniform:
— Let m and n be uniformly distributed random in the range of [0, 1]

r=/gm
0 = 2nn

— Then
Xy =rcosb
Xy =rsinf

Twice as long circumference

v

Twice as many points needed
to maintain the same density

— Why do we need sqgrt(m) for r?

) . o _ Lancaster E=3
Generating a particle distribution University ©°

* We can in fact create any distribution we want with just 3 arrays uniformly
distributed random numbers (m, n, p):

— Assume our required distribution is a function f(x, x")
m is a random number in the range [X,,;, Xmax]
n is a random number in the range |x,,in, X/ax|
p is a random number in the range [0, 1]

f(mn)

max(f(x,x"))
distribution

—Ifp < ,then x = m, x’ = n and this is added to the particle

— Otherwise m, n, p are rejected and we generate new values form, n, p

— We continue this algorithm until we have enough particles in our
distribution.

: : : _ Lancaster E3
Generating/importing a field map University ©°

e A field map can be described in different ways, depending on what you need.

— If an analytical field distribution exists and can be easily described then a
field map can be considered as a function:

e E.g. quadrupoles, dipoles...

— For more complicated systems, we need to define the electric and
magnetic fields at specific points

* This can be 1-, 2-, 3- or even 4D

—4D is very rare and much more difficult as the amount of data grows
rapidly with the number of dimensions!

* The obvious downside with discrete field maps is that you lose
accuracy between grid points.

: : : _ Lancaster E3
Generating/importing a field map University ©°

e Formulaic field maps

— Most tracking codes have commands to class common classes of magnetic
and electric elements:

* Dipole, quadrupole, multipole, kickers...

* As we saw in the previous lecture, if we have a formula to describe the
magnetic and electric fields, we can easily define an equation of
motion (which we can either solve analytically or numerically):

i E.(x,y,z,t) + v,B,(x,y,2,t) —v,B,(x,y,2,t)
(y) =L E,(x,y,z,t) —vB,(x,y,2,t) + v,B,(x,y,2,1)
=) ym E,(x,y,2,t) + v,B,(x,y,2,t) — v,B,(x,y,2,t)

* Later we will come back to this equation

: : : _ Lancaster E3
Generating/importing a field map University ©°

e Discrete field maps
— Most codes will also allow you to import a field map as a text file

* Each code will have its own format for the text file, but they all require
the same information:

—Positionsinx, y, z
—Real and imaginary components of the field in x, y and z

—Usually the electric (E) and magnetic (H) fields are imported as
separate files

(Recall B = 4 x 10~7H)

— Since discrete field maps miss information between the grid points, we
need to interpolate between points in general.

Lancaster E=3

Interpolation of a field map Lniversity o
/l

* As we only have limited data, we need to find a way //

to estimate the field between points: En. o Efnea)

— Linear interpolation ‘4 x/ »‘

» Simplest approach, good for slowly varying fields /;Ix
E(x) =1 Neg +2 ¢ g
X) = — — — ,/
dx)™ " dx (Y ,

— Polynomial interpolation
 Similar to linear interpolation, but requires more data points
* Better accuracy, but more computationally expensive
— Spline fitting
* High accuracy, but computationally expensive, especially for 3D
interpolation

* Most commonly Bezier curves (plenty of information about these
online)

Bezier curves

* Bezier curves are at the core of almost all

spline fitting.

— Let’s start by thinking about a 2" order

Bezier curve:
— Define 3 points, A, Band C

— Draw a line from Ato B (L1), and B to C(L2)

— We will define a parameter t, such that
when it is zero, we are at A on L1 and B on

L2.

— Now draw a line (L3) from L1(t) to L2(t)
— The point L3(t) along our new line describes

our 2" order Bezier curve

Lancaster E=3
University &=

Bezier curves

* Writing this all out as equations:
Xp (t) == (1 — t)sz + Zt(l — t)x1 + tzxZ
yp(t) = (1 —t)%yo + 2t(1 —)y; + t*y,

* Now increase the order of the Bezier curve,
we need more points, so an nt" order Bezier
curve needs n+1 points

— We use these to generate n generations of
Bezier curves (1%t order curves are lines!).

— The functional form of the nt" order Bezier

curve forms a binomial expansion:
n

Po(®) =) (i) =" ke

k=0

Lancaster
University &=

Lancaster EZ&a

Bezier curves University &5
* Writing this all out as equations: ™,
Xp (t) == (1 — t)sz + Zt(l — t)x1 + tzxZ " E
yp(t) = (1 —t)%yo + 2t(1 — t)y; + t%y; ;
: i
* While Bezier curves may have a simple looking *|
form, they can describe very complicated :
shapes in a computationally efficient manner. u g .
— However, a Bezier curve can never perfectly '; e e s s R
describe a circle (I'll leave that as an i 5 5 Q
exercise for you to find out why) =
* As we move to higher and higher dimensions, -
any spline fitting method becomes : & »
computationally expensive and something to 1 4 L
note for any tracking code. i — S T '

: : , Lancaster E3
Integrating trajectories University =~

* So far, we have looked at:
— Generating particle distributions
— Field maps and interpolation

* Now we need to move on to figuring out the particles’ trajectories through
our system.

— Recall from a few slides ago, we said that the equation of motion we get

is:
5 E,(x,y,z,t) + vy,B,(x,y,2,t) —v,B,(x,y,2,t)
(y) -1 E, (x,y,z,t) —v,B,(x,y,z,t) + v,B,(x,y,2,t)
g m
Z E,(x,y,z,t) + vBy(x,y,2,t) —v,By(x,y,2,t)

— While this is true, for relativistic systems, this is not the most appropriate
method.

Lancaster EZEAa

Integrating trajectories University =%
5 . E.(x,y,z,t) + vyB,(x,y,2,t) —v,B,(x,y,2,t)
(y) =—| Ey(x,¥,2,t) —vB,(x,y,2,t) + v,B(x,y,2,1)
g m
Z E,(x,y,z,t) + vBy(x,y,2,t) —v,B,(x,y,2,t)

* This method relies on us using position and velocity, but in relativistic
systems, v < ¢

— Therefore, as we accelerate our particles, the increase in velocity gets
smaller.

* A numerical error could push the velocity over the speed of light and
the tracking code would break down.

— If we remember the Lorentz force:

dp
F=qg(E+vXB)=—
q() =—
* Although the velocity change varies, for a given force, the momentum

increases linearly with time!

: : , Lancaster E3
Integrating trajectories University =~

* The first thing we need to do is describe all velocity-related variables in terms
of momentum. It’s useful to remember:

pc = fymc?
prC = Brymc?
E = ymc?

E? — p2c? = m2c?
* Where p;, means the momentum in the k-direction

* Note that in here ¢ = 1 if we are working in natural units (elsewhere in the
tracking code it won’t be, which is a common cause of errors that even | fall
foul of!).

— To avoid this confusion, we will ignore the c’s and rewrite these as

p = Bym

Pr = Brym
E=ym

E? — p2 = m?

Lancaster E=3

Integrating trajectories University T
p = pym
Pr = Brym
E=ym

E? — p?2 = m?
* We will now use these to help us write velocity in terms of momentum:
b — PrC DPkC
g = -

* Note: in this equation, ¢ = 3 x 108 which is subtle but very important!

. . _ Lancastere
Integrating trajectories University

* Finally we can rewrite out equation of motion into a more appropriate form:

d
_p:q(E+v><B):q<E(x,y,Z,t)+ pXB(X,y,Z,t)>

dt

* The charge is given in units of electrons, so for electrons or protons, we can
take it to be -1 or +1 respectively, allowing us to simplify our equation to:

/Ex + - (psz o szy)\
\/pz 1+ m?2

Ijx C
p.y — Ey + \/pz 2 (szx o prz)
Pz .

(pry - pyBx))

e For simplicity, | will just use the vector form of this equation from now on,
but please not that in reality is a set of 3 coupled differential equations.

: : , _ _ Lancaster E=3
Integrating trajectories — simplest integrator ~ University &=

Ap . E C
* We will assume that we are dealing with a system that is either DC (e.g.

dipole magnet) or single frequency (e.g. RF cavity), so we can pull out the
time dependence as:

Ap
— = E+
At (\/pz +m2

* We will use our field maps and interpolation to estimate the electric and

magnetic fields (usually the magnetic field is given as H = LN

Ho
B = 41 x 10~7H)
— C
Pn+1) — Pn ~ En n
ot Jpa +m?

pXB

p X B) eia)t

Doy % Bn) eiwtn

_ _ _ _ _ Lancaster E=3
Integrating trajectories — simplest integrator ~ University

Pn+1) — Pn ~ (E C

+ X B, |e@in

e Rearranging, this gives us:

C . .
Pn+1) ® Pn t ot E, + P, X B, el®@in — Pn t+ ew)tnFn5t
Vph +m?
PnC
Uy, = >
Vpi +m?
Pn+1)C

* This method is called an Euler integrator
* Note: 6t is called the timestep

Lancaster EE3

Integration methods University

* Integrator order: this refers to order of the numerical error

— E.g. an Euler integrator is a 15t order integrator, so it has errors that are 2"
order or higher.

— Some integrators can limit the maximum error to a certain order, while
others allow errors to propagate and grow over time.

* Symplectic integrators: the total energy of a system is conserved, which in
turn conserves the phase space emittance

— Non-symplectic integrators can lose or gain energy over many iterations,
but this is only really an issue if we want to track particles for very long
times.

* |If we want to improve our tracking accuracy, we can:
— Reduce the timestep
— Increase the integrator order

Lancaster

Most common integrators University T

e Euler integrator:
— Very basic integrator, but very poor accuracy, almost never used

» 4t order Runge-Kutta integrator:
— Quite easy to set up, good accuracy, almost always the method of choice
— Non-symplectic, so not appropriate for long-term simulations
— RK integrators can come in higher orders, but RK4 is most popular.

* Leap frog algorithms:
— Describes a class of methods of different order, can be symplectic or not.
— Position is evaluated at the timesteps, velocity is between timesteps.

— Velocity calculations prone to divergences, which is bad for relativistic
applications!

— The Boris “push” algorithm is a leap frog-like algorithm that’s second order and
can overcome this velocity divergence issue (a popular choice)

Lancaster E=3

RK4 — 4t order Runge-Kutta University

e The algorithm works for equations of the form:

dy
— =f(t,y),y(ty) = ¥

dt
* We get:
ot
Yn+1 =Yn T+ E (kl + 2k, + 2k3 + k4)
* Where
ki = f(tn»yn)
ot ot
k, =f tn +?»yn +k1?
ot ot
k3 :f tn +7:yn +k2?

ky, = f(t, + 8t,y, + k3dt)

Lancaster E=3
RK4 — 4th order Runge-Kutta University

* For our case, we have a second order differential equation, so we can write:

dp

=P =E 4 e
dx Dy C

—_— = t’ = =

 If velocity doesn’t change much (as we are relativistic), then we can solve the
second equation with a simple integrator, like Euler, no need for RK4.

. d . . .,
— Hard to write d—f as an explicit function of x, so RK4 isn’t much better than
Euler in this case.

