Computational lattice design

Numerical methods II

Dr Robert Apsimon
r.apsimon@lancaster.ac.uk

In this lecture

- We will now look at the considerations for writing your own tracking code.
- While there are plenty of tracking codes available, it is good to understand how to write your own.
- Aside from giving a good conceptual understanding, codes written by someone else don't always do exactly what you want it to do...
- ASTRA changes your coordinate system if you use dipoles
- MAD/MADX doesn't allow you to import field maps
- PARMILA/PARMELA is difficult to use and computationally limited
- ...

General strategy for particle tracking

1. Import/generate your particle distribution
2. Import/generate your field map or beam line
3. Integrate your trajectory along the field map/beam line

- Conceptually, writing a tracking code is much easier than it sounds
- There are, of course, plenty of little fiddly bits, but nothing too strenuous!

Generating a particle distribution

- You should all be familiar with the Twiss parameters.
- From this, the beam ellipse can be written as:
$\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=\varepsilon_{g}$
- Where $\varepsilon_{g}=\frac{\varepsilon_{N}}{(\beta \gamma)_{r e l}}$

- Generating a random particle distribution for a rotated ellipse like this is difficult, what would be better is to generate a particle distribution for a circle.
- This is essentially what we do. We define the particle distribution in normalised phase space coordinates and transform it into actual phase space coordinates.

Generating a particle distribution

- If we take the transformation:

$$
\binom{x}{x^{\prime}}=\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)\binom{X_{N}}{X_{N}^{\prime}}
$$

- Then the beam ellipse:
$\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=\varepsilon_{g}$
Turns into:
$X_{N}^{2}+X_{N}^{\prime}{ }^{2}=\varepsilon_{g}$

- So now we can generate our normalised phase space distribution easily and the real phase space coordinates are given as:

$$
\begin{aligned}
& x=\sqrt{\beta} X_{N} \\
& x^{\prime}=\frac{\left(-\alpha X_{N}+X_{N}^{\prime}\right)}{\sqrt{\beta}}
\end{aligned}
$$

Generating a particle distribution

- There are many different particle distributions we could generate
- Most commonly a Gaussian
- Could do uniform distribution
- This is slightly more complicated
- Gaussian:

- Let X_{N} and X_{N}^{\prime} be Gaussian distributed arrays of random numbers with a standard deviation of $\sqrt{\varepsilon_{g}}$

$$
\begin{aligned}
& x=\sqrt{\beta} X_{N} \\
& x^{\prime}=\frac{\left(-\alpha X_{N}+X_{N}^{\prime}\right)}{\sqrt{\beta}}
\end{aligned}
$$

Generating a particle distribution

- Uniform:
- Let m and n be uniformly distributed random in the range of $[0,1]$

$$
\begin{aligned}
& r=\sqrt{\varepsilon_{g} m} \\
& \theta=2 \pi n
\end{aligned}
$$

- Then

$$
\begin{aligned}
& X_{N}=r \cos \theta \\
& X_{N}^{\prime}=r \sin \theta
\end{aligned}
$$

- Why do we need sqrt(m) for r ?

Generating a particle distribution

- We can in fact create any distribution we want with just 3 arrays uniformly distributed random numbers ($\mathrm{m}, \mathrm{n}, \mathrm{p}$):
- Assume our required distribution is a function $f\left(x, x^{\prime}\right)$ m is a random number in the range $\left[x_{\min }, x_{\max }\right]$
n is a random number in the range $\left[x_{\text {min }}^{\prime}, x_{\text {max }}^{\prime}\right]$
p is a random number in the range $[0,1]$
- If $p \leq \frac{f(m, n)}{\max \left(f\left(x, x^{\prime}\right)\right)}$, then $x=m, x^{\prime}=n$ and this is added to the particle distribution
- Otherwise m, n, p are rejected and we generate new values for m, n, p
- We continue this algorithm until we have enough particles in our distribution.

Generating/importing a field map

- A field map can be described in different ways, depending on what you need.
- If an analytical field distribution exists and can be easily described then a field map can be considered as a function:
- E.g. quadrupoles, dipoles...
- For more complicated systems, we need to define the electric and magnetic fields at specific points
- This can be 1-, 2-, 3- or even 4D
$-4 D$ is very rare and much more difficult as the amount of data grows rapidly with the number of dimensions!
- The obvious downside with discrete field maps is that you lose accuracy between grid points.

Generating/importing a field map

- Formulaic field maps
- Most tracking codes have commands to class common classes of magnetic and electric elements:
- Dipole, quadrupole, multipole, kickers...
- As we saw in the previous lecture, if we have a formula to describe the magnetic and electric fields, we can easily define an equation of motion (which we can either solve analytically or numerically):

$$
\left(\begin{array}{l}
\ddot{x} \\
\ddot{y} \\
\ddot{z}
\end{array}\right)=\frac{q}{\gamma m}\left(\begin{array}{l}
E_{x}(x, y, z, t)+v_{y} B_{z}(x, y, z, t)-v_{z} B_{y}(x, y, z, t) \\
E_{y}(x, y, z, t)-v_{x} B_{z}(x, y, z, t)+v_{z} B_{x}(x, y, z, t) \\
E_{z}(x, y, z, t)+v_{x} B_{y}(x, y, z, t)-v_{y} B_{x}(x, y, z, t)
\end{array}\right)
$$

- Later we will come back to this equation

Generating/importing a field map

- Discrete field maps
- Most codes will also allow you to import a field map as a text file
- Each code will have its own format for the text file, but they all require the same information:
-Positions in x, y, z
-Real and imaginary components of the field in x, y and z
-Usually the electric (E) and magnetic (H) fields are imported as separate files

$$
\text { (Recall } B=4 \pi \times 10^{-7} H \text {) }
$$

- Since discrete field maps miss information between the grid points, we need to interpolate between points in general.

Interpolation of a field map

- As we only have limited data, we need to find a way to estimate the field between points:
- Linear interpolation
- Simplest approach, good for slowly varying fields

$$
E(x)=\left(1-\frac{\delta}{d x}\right) E_{n}+\frac{\delta}{d x} E_{(n+1)}
$$

- Polynomial interpolation
- Similar to linear interpolation, but requires more data points
- Better accuracy, but more computationally expensive
- Spline fitting
- High accuracy, but computationally expensive, especially for 3D interpolation
- Most commonly Bezier curves (plenty of information about these online)

Bezier curves

- Bezier curves are at the core of almost all spline fitting.
- Let's start by thinking about a $2^{\text {nd }}$ order Bezier curve:
- Define 3 points, A, B and C
- Draw a line from A to $B(L 1)$, and B to C (L2)
- We will define a parameter t, such that when it is zero, we are at A on L1 and B on L2.
- Now draw a line (L3) from L1(t) to L2(t)
- The point L3(t) along our new line describes our $2^{\text {nd }}$ order Bezier curve

Bezier curves

- Writing this all out as equations:
$x_{B}(t)=(1-t)^{2} x_{0}+2 t(1-t) x_{1}+t^{2} x_{2}$
$y_{B}(t)=(1-t)^{2} y_{0}+2 t(1-t) y_{1}+t^{2} y_{2}$
- Now increase the order of the Bezier curve, we need more points, so an $\mathrm{n}^{\text {th }}$ order Bezier curve needs $n+1$ points
- We use these to generate n generations of Bezier curves ($1^{\text {st }}$ order curves are lines!).
- The functional form of the $\mathrm{n}^{\text {th }}$ order Bezier curve forms a binomial expansion:

$$
P_{B}(t)=\sum_{k=0}^{n}\binom{n}{k}(1-t)^{n-k} t^{k} P_{k}
$$

Bezier curves

- Writing this all out as equations:
$x_{B}(t)=(1-t)^{2} x_{0}+2 t(1-t) x_{1}+t^{2} x_{2}$
$y_{B}(t)=(1-t)^{2} y_{0}+2 t(1-t) y_{1}+t^{2} y_{2}$
- While Bezier curves may have a simple looking form, they can describe very complicated shapes in a computationally efficient manner.
- However, a Bezier curve can never perfectly describe a circle (I'll leave that as an exercise for you to find out why)
- As we move to higher and higher dimensions, any spline fitting method becomes computationally expensive and something to note for any tracking code.

Integrating trajectories

- So far, we have looked at:
- Generating particle distributions
- Field maps and interpolation
- Now we need to move on to figuring out the particles' trajectories through our system.
- Recall from a few slides ago, we said that the equation of motion we get is:

$$
\left(\begin{array}{c}
\ddot{x} \\
\ddot{y} \\
\ddot{z}
\end{array}\right)=\frac{q}{\gamma m}\left(\begin{array}{l}
E_{x}(x, y, z, t)+v_{y} B_{z}(x, y, z, t)-v_{z} B_{y}(x, y, z, t) \\
E_{y}(x, y, z, t)-v_{x} B_{z}(x, y, z, t)+v_{z} B_{x}(x, y, z, t) \\
E_{z}(x, y, z, t)+v_{x} B_{y}(x, y, z, t)-v_{y} B_{x}(x, y, z, t)
\end{array}\right)
$$

- While this is true, for relativistic systems, this is not the most appropriate method.

Integrating trajectories

$$
\left(\begin{array}{l}
\ddot{x} \\
\ddot{y} \\
\ddot{z}
\end{array}\right)=\frac{q}{\gamma m}\left(\begin{array}{l}
E_{x}(x, y, z, t)+v_{y} B_{z}(x, y, z, t)-v_{z} B_{y}(x, y, z, t) \\
E_{y}(x, y, z, t)-v_{x} B_{z}(x, y, z, t)+v_{z} B_{x}(x, y, z, t) \\
E_{z}(x, y, z, t)+v_{x} B_{y}(x, y, z, t)-v_{y} B_{x}(x, y, z, t)
\end{array}\right)
$$

- This method relies on us using position and velocity, but in relativistic systems, $v \leq c$
- Therefore, as we accelerate our particles, the increase in velocity gets smaller.
- A numerical error could push the velocity over the speed of light and the tracking code would break down.
- If we remember the Lorentz force:

$$
F=q(E+v \times B)=\frac{d p}{d t}
$$

- Although the velocity change varies, for a given force, the momentum increases linearly with time!

Integrating trajectories

- The first thing we need to do is describe all velocity-related variables in terms of momentum. It's useful to remember:

$$
\begin{aligned}
& p c=\beta \gamma m c^{2} \\
& p_{k} c=\beta_{k} \gamma m c^{2} \\
& E=\gamma m c^{2} \\
& E^{2}-p^{2} c^{2}=m^{2} c^{4}
\end{aligned}
$$

- Where p_{k} means the momentum in the k-direction
- Note that in here $c=1$ if we are working in natural units (elsewhere in the tracking code it won't be, which is a common cause of errors that even I fall foul of!).
- To avoid this confusion, we will ignore the c's and rewrite these as

$$
\begin{aligned}
& p=\beta \gamma m \\
& p_{k}=\beta_{k} \gamma m \\
& E=\gamma m \\
& E^{2}-p^{2}=m^{2}
\end{aligned}
$$

Integrating trajectories
Lancaster

$$
\begin{aligned}
& p=\beta \gamma m \\
& p_{k}=\beta_{k} \gamma m \\
& E=\gamma m \\
& E^{2}-p^{2}=m^{2}
\end{aligned}
$$

- We will now use these to help us write velocity in terms of momentum:

$$
v_{k}=\frac{p_{k} c}{E}=\frac{p_{k} c}{\sqrt{p^{2}+m^{2}}}
$$

- Note: in this equation, $\boldsymbol{c}=\mathbf{3} \times \mathbf{1 0}^{\mathbf{8}}$ which is subtle but very important!

Integrating trajectories

Lancaster

 University- Finally we can rewrite out equation of motion into a more appropriate form:

$$
\frac{d \boldsymbol{p}}{d t}=q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})=q\left(\boldsymbol{E}(x, y, z, t)+\frac{c}{\sqrt{p^{2}+m^{2}}} \boldsymbol{p} \times \boldsymbol{B}(x, y, z, t)\right)
$$

- The charge is given in units of electrons, so for electrons or protons, we can take it to be -1 or +1 respectively, allowing us to simplify our equation to:

$$
\left(\begin{array}{l}
\dot{p}_{x} \\
\dot{p}_{y} \\
\dot{p}_{z}
\end{array}\right)=\left(\begin{array}{c}
E_{x}+\frac{c}{\sqrt{p^{2}+m^{2}}}\left(p_{y} B_{z}-p_{z} B_{y}\right) \\
E_{y}+\frac{c}{\sqrt{p^{2}+m^{2}}}\left(p_{z} B_{x}-p_{x} B_{z}\right) \\
E_{x}+\frac{c}{\sqrt{p^{2}+m^{2}}}\left(p_{x} B_{y}-p_{y} B_{x}\right)
\end{array}\right)
$$

- For simplicity, I will just use the vector form of this equation from now on, but please not that in reality is a set of 3 coupled differential equations.

Integrating trajectories - simplest integrator

$$
\frac{\Delta \boldsymbol{p}}{\Delta t} \approx \dot{\boldsymbol{p}}=\boldsymbol{E}+\frac{c}{\sqrt{p^{2}+m^{2}}} \boldsymbol{p} \times \boldsymbol{B}
$$

- We will assume that we are dealing with a system that is either DC (e.g. dipole magnet) or single frequency (e.g. RF cavity), so we can pull out the time dependence as:

$$
\frac{\Delta \boldsymbol{p}}{\Delta t} \approx\left(\boldsymbol{E}+\frac{c}{\sqrt{p^{2}+m^{2}}} \boldsymbol{p} \times \boldsymbol{B}\right) e^{i \omega t}
$$

- We will use our field maps and interpolation to estimate the electric and magnetic fields (usually the magnetic field is given as $H=\frac{B}{\mu_{0}} \Rightarrow$ $\left.B=4 \pi \times 10^{-7} \mathrm{H}\right)$

$$
\frac{p_{(n+1)}-p_{n}}{\delta t} \approx\left(E_{n}+\frac{c}{\sqrt{p_{n}^{2}+m^{2}}} p_{n} \times B_{n}\right) e^{i \omega t_{n}}
$$

Integrating trajectories - simplest integrator

$$
\frac{\boldsymbol{p}_{(n+1)}-\boldsymbol{p}_{n}}{\delta t} \approx\left(\boldsymbol{E}_{n}+\frac{c}{\sqrt{p_{n}^{2}+m^{2}}} \boldsymbol{p}_{n} \times \boldsymbol{B}_{n}\right) e^{i \omega t_{n}}
$$

- Rearranging, this gives us:

$$
\begin{aligned}
& \boldsymbol{p}_{(n+1)} \approx \boldsymbol{p}_{n}+\delta t\left(\boldsymbol{E}_{n}+\frac{c}{\sqrt{p_{n}^{2}+m^{2}}} \boldsymbol{p}_{n} \times \boldsymbol{B}_{n}\right) e^{i \omega t_{n}}=\boldsymbol{p}_{n}+e^{i \omega t_{n}} \boldsymbol{F}_{n} \delta t \\
& \boldsymbol{v}_{n}=\frac{\boldsymbol{p}_{n} c}{\sqrt{p_{n}^{2}+m^{2}}} \\
& \boldsymbol{v}_{(n+1)}=\frac{\boldsymbol{p}_{(n+1)} c}{\sqrt{p_{(n+1)}^{2}+m^{2}}} \\
& \boldsymbol{x}_{(n+1)}=\boldsymbol{x}_{n}+\frac{\left(\boldsymbol{v}_{n}+\boldsymbol{v}_{(n+1)}\right)}{2} \delta t
\end{aligned}
$$

- This method is called an Euler integrator
- Note: δt is called the timestep

Integration methods

- Integrator order: this refers to order of the numerical error
- E.g. an Euler integrator is a $1^{\text {st }}$ order integrator, so it has errors that are $2^{\text {nd }}$ order or higher.
- Some integrators can limit the maximum error to a certain order, while others allow errors to propagate and grow over time.
- Symplectic integrators: the total energy of a system is conserved, which in turn conserves the phase space emittance
- Non-symplectic integrators can lose or gain energy over many iterations, but this is only really an issue if we want to track particles for very long times.
- If we want to improve our tracking accuracy, we can:
- Reduce the timestep
- Increase the integrator order

Most common integrators

- Euler integrator:
- Very basic integrator, but very poor accuracy, almost never used
- $4^{\text {th }}$ order Runge-Kutta integrator:
- Quite easy to set up, good accuracy, almost always the method of choice
- Non-symplectic, so not appropriate for long-term simulations
- RK integrators can come in higher orders, but RK4 is most popular.
- Leap frog algorithms:
- Describes a class of methods of different order, can be symplectic or not.
- Position is evaluated at the timesteps, velocity is between timesteps.
- Velocity calculations prone to divergences, which is bad for relativistic applications!
- The Boris "push" algorithm is a leap frog-like algorithm that's second order and can overcome this velocity divergence issue (a popular choice)

RK4 - $4^{\text {th }}$ order Runge-Kutta

- The algorithm works for equations of the form:

$$
\frac{d y}{d t}=f(t, y), y\left(t_{0}\right)=y_{0}
$$

- We get:

$$
y_{n+1}=y_{n}+\frac{\delta t}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
$$

- Where

$$
\begin{aligned}
& k_{1}=f\left(t_{n}, y_{n}\right) \\
& k_{2}=f\left(t_{n}+\frac{\delta t}{2}, y_{n}+k_{1} \frac{\delta t}{2}\right) \\
& k_{3}=f\left(t_{n}+\frac{\delta t}{2}, y_{n}+k_{2} \frac{\delta t}{2}\right) \\
& k_{4}=f\left(t_{n}+\delta t, y_{n}+k_{3} \delta t\right)
\end{aligned}
$$

RK4 $-4^{\text {th }}$ order Runge-Kutta

- For our case, we have a second order differential equation, so we can write:

$$
\begin{aligned}
& \frac{d p}{d t}=f(t, p)=\boldsymbol{E}+\frac{c}{\sqrt{p^{2}+m^{2}}} \boldsymbol{p} \times \boldsymbol{B} \\
& \frac{d x}{d t}=g(t, x)=\frac{p_{x} c}{\sqrt{p^{2}+m^{2}}}=v_{x}
\end{aligned}
$$

- If velocity doesn't change much (as we are relativistic), then we can solve the second equation with a simple integrator, like Euler, no need for RK4.
- Hard to write $\frac{d x}{d t}$ as an explicit function of x , so RK4 isn't much better than Euler in this case.

