Lancaster E=E -
University ¢

Computational lattice design

Numerical methods |

Dr Robert Apsimon
r.apsimon@Ilancaster.ac.uk

mailto:r.apsimon@lancaster.ac.uk

Lancaster E=3
Plan for today Lniversiy

* Lecture 1:

— Conceptual overview of numerical methods for accelerator design and
simulation codes.

* Lecture 2:
— Detailed look at the structure of tracking codes

* Lecture 3:

— Practical tutorial to writing your own basic tracking code

* |f you don’t have a laptop with you, or do have some coding language
(matlab, Python, C/C++...) then please pair up with someone.

_ Lancaster E=3
What are computational methods used for? University =

* Tracking codes:

— A generated particle distribution is tracked along a beam line with the distribution
output at certain points to allow for analysis.

* Single-particle tracking is used for accurate modelling of trajectories.
— Usually works with small step sizes or higher order integrators.
— Computationally intensive, so only used for small number of particles.

— Most commonly used for longitudinal dynamics where transverse effects are less
important.

* Multi-particle tracking used for global exploration of phase space

— Less computationally intensive, at cost of slight reduction in accuracy, allowing for
more particles

— Good for long-term or nonlinear effects (bunching, dynamic aperture studies...)

Single- multi- e g® °e%
. o _©O ®
particle varticle ege® HEEEED © ®eo

. [
tracking tracking

_ Lancaster E=3
What are computational methods used for? University =

 Beam line design and optimisation:
— E.g. MAD, ELEGANT
— Primarily focused on matching beam and/or lattice parameters.

() =G 2 ()
X1 Ry1 Ry X

:81 R%l _2R11R12 R%Z IBO
a | = _R11R21 R11R22 + R12R21 _R12R22 ao

Y1 R34 —2R,¢R5, R%, Yo

Lancaster E=3
What types of methods are used for University =

accelerator codes?

* Tracking codes:
— Numerical integrators:
* There are many different options on integration that we will look into.
* This is the main focus of today’s lectures

e Lattice design and optimisation
— Numerical optimisers
* Again, many different options with pros/cons depending on application
* Will touch on this, but won’t go into too much depth

: _ Lancaster E=3
Why do we need computational methods in University ==

lattice design?

* |n simple cases, we can solve Hill’s Equation (X' + K(s)X = 0), or use other
techniques to solve or optimise analytically (e.g. transfer matrices)

— E.g. thin-lens FODO can be completely solved analytically

— However, this is arduous, and the complexity of the equations grows
rapidly if we add more elements.

* In many cases, as we shall see, the equations cannot be solved analytically.
* We must either solve numerically, or use approximations (e.g. thin-lens)

— Optimisation of lattice and beam parameters can be difficult even in
simple cases

* E.g. minimising the beam size in a thin-lens FODO cell

— Nonlinear elements such as sextupoles must be solved numerically.

_ Lancaster E=3
Example 1: trajectory through a quadrupole Lniversiy

* For a quadrupole, we know the magnetic field varies as:

dB
B, = x—=

y xdx
edBy

— Recall: k = ——=
p dx

* The force on a moving charged particle due to a magnetic field is:
F=evXB

dB,
= F, = ev,B, = v,e xa = kv,px

* Writing this as a differential equation:
d’x kv,p
= X

dt? ym

_ Lancaster E=3
Example 1: trajectory through a quadrupole Lniversiy

* Next, we want to convert from time to z position:

Z =v,t
* So our differential equation changes as:
d’x kv,p ,d*x kpv,
dtz ym ¥ PV g2 T ym *
* Rearranging gives us:
d*x
e kymvzx = kx
— Recall: p = fymc = ymv,
* Therefore: o
d*x
@ = kx

— This is the Hill’'s equation for a quadrupole

_ Lancaster E=3
Example 1: trajectory through a quadrupole Lniversiy gy

dzx_k
dz2 *

* The general solution for this is:

(Acos(@z)+Bsin(\/Ez), k<O

X = 3
A cosh (\/Ez) + B sinh (\/Ez)) k>0
\
* |f we furthermore apply the initial conditions:
x(0) = xq
x'(0) = x;
We get:
(Xy .
. xocos(\/zz)+\/—zsm(\/zz), k<O
xl
x, cosh (Vkz) + = sinh (Vkz) k=0
o (V) + 2o (VT2

Example 1: trajectory through a quadrupole

r X! &)
Vkz)+=sin(Vkz), k<0
. X cos(Z) ﬁsTn(z)
on cosh (\/EZ) -+ \/_E sinh (\/Ez)) k >

 Differentiating gives us:
(

x' =<

\

Lancaster E=3
University = °

0

—xo\/z sin (\/Ez) + x| cos (\/EZ) k<0
xo\/E sinh (\/EZ) + x; cosh (\/Ez)) k>0

Lancaster EE3

Example 1: trajectory through a quadrupole University %

* And we can put this all together into a familiar transfer matrix form:

* Focusing quad:
sin(Vkz
(x}) _ COS (\/Ez) E/F) (x(,))
X1 X}
—Vk sin (\/Ez) coS (\/Ez)

* Defocusing quad:

_ cosh (\/Ez) Sinh\g_fz) (x(l))
Vk sinh (\/EZ) cosh (\/Ez)

_ Lancaster E=3
Example 2: trajectory through a sextupole University

* What about a sextupole? In this case, we can write the magnetic field due to
a transverse offset as:
e
* From the force and converting t = z, we get the differential equation:
d?x ,
F = k3x

* To solve this, we will use a different approach and assume the solution is:

(00)
X = z a,z"
n=0

By

_ Lancaster E=3
Example 2: trajectory through a sextupole University

* Plugging our assumed solution into our equation, we get:
2

Z(n — Dna,z™ 2 =k, z a,z"
n=2 n=0

* Writing out the first few terms on each side, we get:
2a, + 6as3z + 12a,z% + -+ = kga3 + 2ksaga,z + k3(2apa, + a)z? + -

* Now we can solve coefficients by comparing like terms:

_ ksaf _ kzapa; _ k3aj+af
A2 == 3 =75 e =77,

Lancastere

Example 2: trajectory through a sextupole University

* Applying the same initial conditions as before, we find that our solution is:
x = kaxg + 2k3xoxpz + (k3x0 + k3xq)zz + .-
x' = 2k3xpxg + 2 (k3x0 + k3x))Z + -

e Key points about this:

— For sextupoles and other nonlinear elements, there is no closed form
solution for the trajectory.

— The trajectory has a nonlinear dependence on initial conditions and
sextupole strength, making them difficult to model analytically.

— By assuming a series expansion solution, we can solve similar problems
like this to any order.

* But need to note this will always be an approximation.

. ' o . Lancastera
Lattice design & optimisation: numerical University 3

optimisers

As mentioned at the beginning of the lecture, lattice design and optimisation
is focused on matching beam and lattice parameters.

— Require numerical optimisers to do this, but what type?

Global optimisers
— Good at finding globally optimal region of parameter space
— Generally poor (or slow) at converging to the globally optimal solution.

Local optimisers
— Will rapidly converge to an optimal solution
— Prone to getting stuck in a local minimum

Quite common to use a global optimiser then a local one to find solutions

: , L Lancaster E=3
Lattice design and optimisation University =

* As with integration, optimisation problems can get very complicated very
quickly!

— E.g. Consider a beam line of 2 quads and 2 drift lengths, where we want to
define the quad strengths and drift lengths in order to match the initial
and final beam parameters:

— Unknowns: Lq, Ly, k4, ko

— Knowns: Initial and final By, By, @y, ay,

e This seems like quite an easy problem until you look at the equations to
solve...

kl k2

< < >

_ . . Lancaster E=3
Constraint equations for a 2-quad matching cell University

* Not analytically
solvable

+(SER, cos(\fk—.ra)(m(m)—msin(mn)av+(cos(\m—.m(“‘\‘%+L;ws(\m}(““\‘%u. m(\fk“!a))(ws(\fm—\fk‘shsin(\fk‘afa))y“;;"""' * Parameter space

riddled with local

minima

* Even numerical
optimisers
struggle with this

2
B = ((m“(\"'j‘_\{o)= Ry sin(yR L)) (cos(iaL) — Ly sin(Tal,)) — Ry sin(R 1,) (L:?m +1, cos{y/Te L,])) B
v

2
=2{ (eos(yRily) = VR Ly sin(yR L)) (cos(RoL,) — e Lo sin(Rl)) = Ry sin (R) (%"’ L, cos(R,])) (ws(‘-",jf_liv) (@ +L °°5(\"k_33¢))
vk,

Wiz

lnh(\ﬁ'k_ﬁ,‘)
[k

Bi= ((ms'l(\",k_lio] =L sinh (T 1,))(eosh(yK, L) = K, L; sinh({K,1)) — /R, sinh(E,L,) (5 + L cosh(,/; 1,])) By

vk

— 2| (cosh(y&,1,) — &L, sinh (/1)) (cosh(F,1,) — %, L, sinh(%1,)) — /&, sinh((R0, (@ +L, cush(\m!o))) (cosh(JEQ) (@4— L msh(\fkjic])
v e vz

+ (@+ L, cosh(/% 1,]) (cosh(y%,1,) — JF L, smh(\."k_sia)))aﬂ

bl

“ 2z
+ (oush[\."k_liu] (%+ L cosh(\.’k_dfo]) + (% +L, cosh(\.’k_,io]) (cosh{T;1,) —FoL; sinll(\."k_lie]]) %
Ve 1

v

ay = ((ws(\'”‘_lin] =Ry Ly sin(yRy g)) (eos(y/Ryd) — /R Ly sinyR,1) = |y sin(yFq0,) (%ﬂ?w +L ‘m(\"'k_dio)J) (\"k_\ sin(y/k Ly) eos(iz} + Kz sin(yRaly) (cos(VE: 1) — ki Ly sin{ R0,])IB-EI
Vi

. (((css(mn) s 1) o) - Rt inF1) - R (2, m(m)))(m(m)m(m)] C ms(\fm))
z v
- (ms(\",k_ltv) (@ +1 C“(\"Eiv)) + (@4' L, cos(ki1,)) (eos(Vkaly) = VE.L, sinf E:1,))) (\"'k_l sinf 1) cos(fRa1,) + Rz sin(oL (cos(il — JRiL Si“(\"'k_lla)))) a
¥ ¥
) in(y%! e (af)?
+ (cos(\."k_lio) cos(/&1,) — e sin(/E.1,) (sm:—leq)+ L, eos(yT1,))) .8;

.“; = ((“’Sh[\"k_ﬂc)= Ly sinh(y k1,) (cosh (i,) — ke L, sinh(yRa1,) = o/ sinh (i1, (%"’ L, cosh(kL) JJ (\."k_, sinh(y/%;1,) cosh(/KoL) + Rz sinh(y/R.1,) (cosh(R, L) — /K., Smh(\."'k_l{on) By
Ve

+ <((omh(\miu) — &Ly sinh(\fT; L,))(cosh(y[R;1,) — /R L, sinh ([T,)) — &, sinh(/% 1,) (m}'?{a) +L, cosh(\."k_zin)j) (cosh(\."k_‘ioj cosh(/% 1,)
Ve
—Jk; sinh(\K;1,) (@ +1, cosh(\ff‘{o)])
Vi
- (cosh(\."k_lio] (%‘F L, cosh(k;1,)) + (@ +1, cosh(,/k 1,)) (cosh(y/F;1,) — R, L, sinh(F;1,))) (\F'k_, sinh(/7,1,) cosh (21,)
Vi v

B 2
+Jk; sinh(/K, 1,) (cosh (&, 1,) — /&, L, sinh(,/k, 1)))) al + (msh(\."kiie) cosh(,/k,1,) — /k; sinh(&, 1) (%P +1, mh(\ffli,))) %
¥ ¥

, o Lancaster E=3
My preferred approach to solving difficult University G

optimisation problems

1. Simplify the problem to a thin-lens approximation

— This reduces the constraints to polynomials, so we know there will only be a
finite number of solutions

2. Solve this simplified problem numerically

— Numerical optimisers will spit out a list of solutions

— If there are no solutions, it’s likely that there are no solutions in the thick-lens
case (though not certain...)

3. Discard unphysical solutions from your list and select the “best” solution

— Discard cases with negative lengths or complex values

— “best” solution is usually obvious, such as smallest length, or lowest magnet
strengths etc.

4. Use your “best” solution as the starting point for the thick-lens problem
— Much more likely to find the best solution without being stuck in local minima.

