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Plan for today

• Lecture 1:

– Conceptual overview of numerical methods for accelerator design and 
simulation codes.

• Lecture 2:

– Detailed look at the structure of tracking codes

• Lecture 3:

– Practical tutorial to writing your own basic tracking code

• If you don’t have a laptop with you, or do have some coding language 
(matlab, Python, C/C++…) then please pair up with someone.



What are computational methods used for?

• Tracking codes:

– A generated particle distribution is tracked along a beam line with the distribution 
output at certain points to allow for analysis.

• Single-particle tracking is used for accurate modelling of trajectories.

– Usually works with small step sizes or higher order integrators.

– Computationally intensive, so only used for small number of particles.

– Most commonly used for longitudinal dynamics where transverse effects are less 
important.

• Multi-particle tracking used for global exploration of phase space

– Less computationally intensive, at cost of slight reduction in accuracy, allowing for 
more particles

– Good for long-term or nonlinear effects (bunching, dynamic aperture studies…)

Single-
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What are computational methods used for?

• Beam line design and optimisation:

– E.g. MAD, ELEGANT

– Primarily focused on matching beam and/or lattice parameters.
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What types of methods are used for 
accelerator codes?

• Tracking codes:

– Numerical integrators:

• There are many different options on integration that we will look into.

• This is the main focus of today’s lectures

• Lattice design and optimisation

– Numerical optimisers

• Again, many different options with pros/cons depending on application

• Will touch on this, but won’t go into too much depth



Why do we need computational methods in 
lattice design?

• In simple cases, we can solve Hill’s Equation (𝑋′′ + 𝐾 𝑠 𝑋 = 0), or use other 
techniques to solve or optimise analytically (e.g. transfer matrices)

– E.g. thin-lens FODO can be completely solved analytically

– However, this is arduous, and the complexity of the equations grows 
rapidly if we add more elements.

• In many cases, as we shall see, the equations cannot be solved analytically.

• We must either solve numerically, or use approximations (e.g. thin-lens)

– Optimisation of lattice and beam parameters can be difficult even in 
simple cases

• E.g. minimising the beam size in a thin-lens FODO cell

– Nonlinear elements such as sextupoles must be solved numerically.



Example 1: trajectory through a quadrupole

• For a quadrupole, we know the magnetic field varies as:
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• The force on a moving charged particle due to a magnetic field is:
𝐹 = 𝑒𝑣 × 𝐵
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Example 1: trajectory through a quadrupole

• Next, we want to convert from time to z position:
𝑧 = 𝑣𝑧𝑡

• So our differential equation changes as:
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• Rearranging gives us:
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– Recall: 𝑝 = 𝛽𝛾𝑚𝑐 = 𝛾𝑚𝑣𝑧
• Therefore:
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– This is the Hill’s equation for a quadrupole



Example 1: trajectory through a quadrupole

𝑑2𝑥
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• The general solution for this is:

𝑥 = ൞
𝐴 cos 𝑘𝑧 + 𝐵 sin 𝑘𝑧 , 𝑘 < 0

𝐴 cosh 𝑘𝑧 + 𝐵 sinh 𝑘𝑧 , 𝑘 ≥ 0

• If we furthermore apply the initial conditions:
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Example 1: trajectory through a quadrupole
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• Differentiating gives us:
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Example 1: trajectory through a quadrupole

• And we can put this all together into a familiar transfer matrix form:

• Focusing quad:
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Example 2: trajectory through a sextupole

• What about a sextupole? In this case, we can write the magnetic field due to 
a transverse offset as:

𝐵𝑦 =
𝑘3𝑝

𝑒
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• From the force and converting 𝑡 → 𝑧, we get the differential equation:
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• To solve this, we will use a different approach and assume the solution is:
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Example 2: trajectory through a sextupole

• Plugging our assumed solution into our equation, we get:
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• Writing out the first few terms on each side, we get:
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Example 2: trajectory through a sextupole

• Applying the same initial conditions as before, we find that our solution is:
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• Key points about this:

– For sextupoles and other nonlinear elements, there is no closed form 
solution for the trajectory.

– The trajectory has a nonlinear dependence on initial conditions and 
sextupole strength, making them difficult to model analytically.

– By assuming a series expansion solution, we can solve similar problems 
like this to any order.

• But need to note this will always be an approximation.



Lattice design & optimisation: numerical 
optimisers

• As mentioned at the beginning of the lecture, lattice design and optimisation 
is focused on matching beam and lattice parameters.

– Require numerical optimisers to do this, but what type?

• Global optimisers

– Good at finding globally optimal region of parameter space

– Generally poor (or slow) at converging to the globally optimal solution.

• Local optimisers

– Will rapidly converge to an optimal solution

– Prone to getting stuck in a local minimum

• Quite common to use a global optimiser then a local one to find solutions



Lattice design and optimisation

• As with integration, optimisation problems can get very complicated very 
quickly!

– E.g. Consider a beam line of 2 quads and 2 drift lengths, where we want to 
define the quad strengths and drift lengths in order to match the initial 
and final beam parameters:

– Unknowns: 𝐿1, 𝐿2, 𝑘1, 𝑘2

– Knowns: Initial and final 𝛽𝑥, 𝛽𝑦, 𝛼𝑥, 𝛼𝑦

• This seems like quite an easy problem until you look at the equations to 
solve…
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Constraint equations for a 2-quad matching cell

• Not analytically 
solvable

• Parameter space 
riddled with local 
minima

• Even numerical 
optimisers 
struggle with this



My preferred approach to solving difficult 
optimisation problems

1. Simplify the problem to a thin-lens approximation

– This reduces the constraints to polynomials, so we know there will only be a 
finite number of solutions

2. Solve this simplified problem numerically

– Numerical optimisers will spit out a list of solutions

– If there are no solutions, it’s likely that there are no solutions in the thick-lens 
case (though not certain…)

3. Discard unphysical solutions from your list and select the “best” solution

– Discard cases with negative lengths or complex values

– “best” solution is usually obvious, such as smallest length, or lowest magnet 
strengths etc.

4. Use your “best” solution as the starting point for the thick-lens problem

– Much more likely to find the best solution without being stuck in local minima.


