PAUL SCHERRER INSTITUT

Joachim Grillenberger :: Paul Scherrer Institut :: Head of Proton Facilities

Is a Megawatt Accelerator Sustainable?

Sustainable Accelerators Workshop 2022 Daresbury Laboratory

Energy consumption (MW)

590 MeV Ring Cyclotron at PSI

1.4 MW beam power (2.4 mA)

Beam energy:	590 MeV
Beam current:	2.4 mA
Beam power:	1.4 MW
U _{cav} :	850 kVp
Number of turns:	186
8 sector magnets:	0.6 – 0.9 T
R _{in} :	2.1 m
R _{out} :	4.5 m

High Intensity Proton Accelerator Facility a Megawatt Accelerator

Is a Megawatt Accelerator Sustainable?

Yes, if the most efficient (accelerator) technology is being used

Cyclotron Efficiency at PSI

$$\eta_{acc} = \frac{P_{beam}}{P_{Grid}}$$

COMET 250 MeV Medical Cyclotron

0.5 MW from public grid
< 1 μA for patient treatment
efficiency 0.05%

Running costs for electricity: 400 000 sFr/year

PSI 590 MeV cyclotron

12 MW from public grid 1.4 MW beam power (2.4 mA) efficiency 12%

Running costs for electricity: 5 MsFr/year

Is a Cyclotron efficient?

 $\eta_{acc} = \frac{P_{beam}}{P_{Grid}}$

Kyushu FFA

Energy up to 10 GeV P_{beam} = to be demonstrated η_{acc} = ?% Footprint 30'000 sqm

Spallation Neutron Source

1 GeV protons, 60 Hz P_{beam} =1.4 MW, P_{grid} =26 MW η_{acc} = 5% Footprint 100'000 sqm

PSI Proton Facility

590 MeV, 50 MHz P_{beam} = 1.4 MW, P_{grid} =8 MW η_{acc} = 18% Footprint 20'000 sqm

High power machines that are used to generate (secondary) particles at high intensities (neutrons, muons or neutrinos).

- They cover a broad spectrum of particle physics and material science
- Consume large amounts of electrical energy
- Scientists want better flux, rate, brightness, luminosity...
- Even more power is needed

Overall Efficiency

Total power consumption:	12 MW
Beam Power:	1.4 MW
Efficiency:	12%
Just the accelerator:	18%

Most efficient accelerator 50% of PSI's total energy consumption

Power Distribution Proton Facility

Grid to Beam Power Conversion

Almost independent from the beam power

Grid to Beam Power Conversion

History of the Beam Power Designed for 60 kW

Scaling Law by W. Joho¹

[1] W. Joho, High intensity problems in cyclotrons, Proceedings of the 9th International Conference on Cyclotron and their Applications, pp. 337–47. Les Editions de Physique, BP 112, 91402 Orsay (France), ISBN 978-3-95450-160-1 (1981).

Efficiency and Beam Power

Beam power increases with gap voltage $I_{max} \sim V^3$ (Joho)

Cavity wall losses increase with gap voltage $P_{loss} = \frac{\left|V_{acc}\right|^2}{2 \cdot R}$

Fig.: number of turns vs beam current

Base load (magnets, infrastructure, instruments, ...) stays the same

$$\Rightarrow \qquad \eta_{acc} = \frac{I \cdot E_{kin} / q}{\frac{(I / c)^{2}}{3} \cdot E_{kin}^{2} + k \cdot I \cdot E_{kin} / q + P_{aux}} \qquad \text{(Grillenberger)}$$

Efficiency vs Beam current

Amplifier Efficiency

4-stage power amplifier chain with power Tetrode Tubes

- AC to DC: 90% •
- DC to RF: 64% ٠
- RF to beam: 55%
- All over: 32%

- DC to RF: 90% ٠
- RF to beam: 55% ٠
- All over: 45%

Huge and expensive (5-10€/Watt)

Cyclotron Cavities

	Al-Cavity	Cu-Cavity
Frequency	50.6 MHz	50.6 MHz
Voltage	750 kV _p	1.2 MV _p
Dissipated Power	300 kW	500 kW
Q-value	28'000	48'000
Bandwidth	1.8 kHz	1 kHz
Tuning Range	240 kHz	560 kHz

Efficiency was not really the reason for replacing the cavities

- f = 50.6 MHz
- U_{max} = 1.2 MV (presently 850 kVp)
- $Q = 4.8 \cdot 10^4$
- Transfer of up to 400 kW power to the beam per cavity

150 MHz Flattop Cavity (1979)

Increase efficiency by decreasing particle losses

- ^{3rd} harmonic «flattop» cavity
- 150 MHz
- 550 kVp maximum
- Q = 28000
- Gap g = 0.4 m

- Larger phase acceptance (40° instead of 9°)
- Factor of 10 less losses at extraction @ 1mA
- Factor of 2 higher beam current
- Factor of 1.8 higher effciency

Extraction with off-center orbits

Induce betatron oscillations around the «closed orbit» to increase the radial separation between the last two turns

Electrostatic Injection Channel

Extraction with off-center orbits

Induce betatron oscillations around the «closed orbit» to increase the radial separation between the last two turns

$$\eta_{acc}\approx \frac{1\,MW}{9.5\,MW}\approx 0.11$$

with orbit oscillations: extraction gap; up to 3 x stepwidth possible (PSI: 18mm)

Availability and Efficiency

- High availability is of uttermost importance for the users (repeat experiments, travel)
- Availability has an impact on the energy efficiency especially if systems are running without beam!

SLEEP at **PSI**

System for Lucrative Energy Economization in Proton accelerators

	ZSLP_main.ui (on hipa-lc6-32) _ 🗆 ×							
	SLEEP							
I	Beamline	Status	Beam Current	In Standby for	Currently Saved	Saved This Year	Control Switch	Notifications
B	IW2	ON	0.0 µA	0d0h0m0s	0.0000 MWh	25.59 MWh	STANDBY ON	Dismiss Notification
B	IP2	ON	0.0 µA	0d0h0m0s	0.0000 MWh	376.63 MWh	STANDBY ON	Dismiss Notification
B	PK1	ON	0.0 µA	0d0h0m0s	0.0000 MWh	41.78 MWh	STANDBY ON	Dismiss Notification
Ē	РК2	STANDBY	0.0 µA	1d Oh 8m 8s	9.7657 MWh	43.37 MWh	STANDBY ON	
Ē	SINQ	STANDBY	0.0 µA	1d 0h 8m 27s	13.5948 MWh	47.23 MWh	STANDBY ON	
	UCN	STANDBY	0.0 µA	<mark>1d Oh 8m 55s</mark>	3.0640 MWh	512.80 MWh	STANDBY ON	
То	tal Power	0.000 MW		1	Total Savings	1047.4MWh		🚰 Maintenance

Similar to a Start-Stop system in cars

A. Kovach, PSI

- Runs in parallel with control software EPICS
- Used to switch off beamline magnets during outages
- Intuitive: Switching a set of magnets On/Standby by only one click
- "No-Beam" notification every 30 minutes (orange) for operators
- Displays and logs the amount of energy saved (refunds!)

SLEEP Savings

Average power of all beamline magnets (300): ~1.8 MW

Potential energy savings with 220d of operation*:

- for outages >30min: 570 MWh/a
- Beam development / setup / training: 409 MWh/a

*average downtime 170h/a

average outage time: 120 min (average over past 10 years)

Secondary particle flux is the key figure for users

Steps Towards a Higher Efficiency SINQ – Upgrade 2019

- Replacement of neutron guides
- optimization of instruments
- Optimization of D₂O moderator geometry

- measured flux gains ranging from 2–30 depending on the instrument
- signal to noise ratio increased by a factor of 6
- Accelerator can't compete 😕

The High Intensity Muon Beam Project Financial period: 2025 – 2028

- New target design (slanted)
- New beamline setup (solenoids)

• Factor of 100 higher muon rate (10¹⁰ muons/s)

Office

heating

Connected wattage 2 MW

- Cooling power primary circuit 7 MW
- Cooling power secondary circuit 3

Operating load:

- Primary circuit
- Secondary circuit

Overall efficiency:

3 MW 0.3 MW 0.25 MW

94%

9 GWh / year

Improvements:

- Energy recovery
- Piping design (higher cross section)
- Office and district heating
- Heat pumps

Photovoltaics at PSI

Nr. of PV modules (340 W): Total surface: Peak power: Energy yield 2021: Costs: Write-off: Commissioning: 936 5'500 m² 600 kW 600 MWh (0.4% PSI) 1'425'000.- CHF 25 years with ∅ 6,5 ct/kWh October 2020

Feasability study:		A B C D1 E F G H J	7
Total surface:	40'000 m ²	AREAL WEST 2 AREAL OST	
Peak power:	5-7 MW (5% PSI)		INCO IN
Total cost (including restoration)	11 Mio CHF		ľ

Replacement of piston compressors with screw compressors

- 180 kW lower power consumption
- 1.3 GWh yearly savings

Characterization of activated material

- Building with necessary infrastructure available (total γ, in-situ γ spectrometry)
- Experience from former and ongoing dismantling projects (e.g. injector 1)
- Waste sorting
- Re-use of activated material

New Radiological Protection Ordinance 2018

Total y

pectrometry

Energy Issues at PSI in 2022

- 133.5 GWh of electric energy were purchased for 2022
- Fixed price is 60.71 CHF/MWh
- The fixed prices is valid within +/- 5%

PSI electric power consumption 2022

- above 5%, a penalty + spot market price applies
- currently PSI is 6% above forecast

Forward prices of quarterly products (Status 23.11.2022)

- Spot price 23.11.2021: ca. 43 EUR/MWh
- Spot price maximum 30.08.2022: ca. 720 EUR/MWh
- Spot price 25.11.2022: ca. **280 EUR/MWh**

With 1% above the forecast, ca. 700 000 EUR could incur for PSI

Measures to save Energy

SwissFEL

- Shutdown 11 days earlier: 450 MWh
- 50 Hz instead of 100 Hz operation: 325 MWh

SLS

• 2 days of additional Shutdown: 100 MWh

Proton Facility

 Shutdown 5 days earlier: 	1150 MWh
 No beam development: 	280 MWh
• Unexpected conditioning flatto	p: -100 MWh
	2205 MWh

To save ca. 14 GWh in 2032, measures also taken in 2023 definite SLS darktime in October 23 (4500 MWh) -> SLS 2.0 Upgrade

Efficiency and beam current

During 70 d of operation:840 MWhCorresponds to 3 days of user operation

Increase of Number of Turns

Cyclotrons for Accelerator Driven Systems

The energy efficiency is specifically important within the context of **Accelerator Driven Systems**

E.g.: power generation with a Thorium subcritical device

Transmutation of Radioactive Waste

Intrinsic Safety from Subcriticality

Framework agreement of accelerator

Is a Megawatt Accelerator Sustainable?

Yes, especially if the most efficient system is being used. A Cyclotron.

PSI is a Nature Sanctuary

Some Sustainability Attempts at PSI

Mobility

- "free" use of eBikes
- Half-fare tickets
- Free charging eCars
- CO₂ compensation travelling
- Remote work

Environment

- Afforestation
- Food waste Less meat
- Green Team
- Nature Sanctuary

