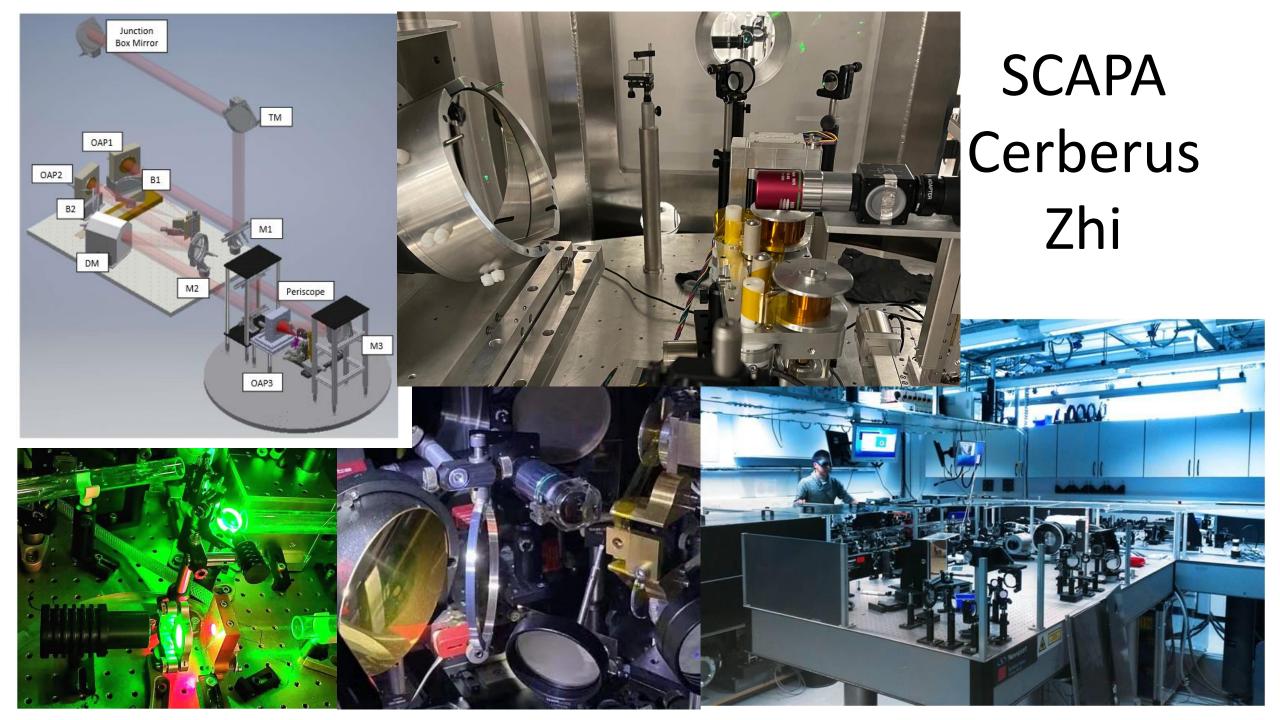
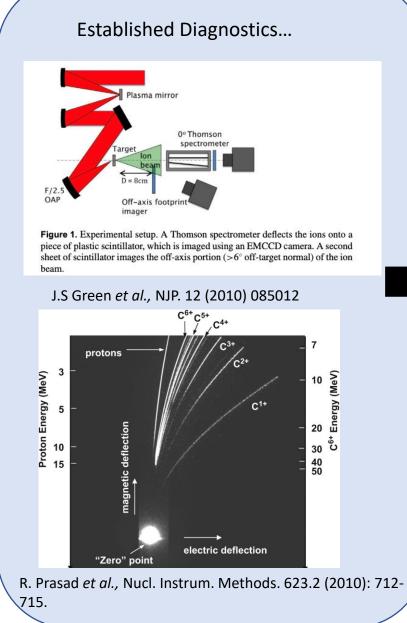

Ion production space charge

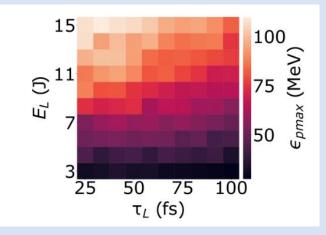

- Ions experience the electric field due to their neighbours – space charge – and repel each other.
- Effect is worst when ions have low energy – faster acceleration = better beam.
- Conventional ion sources extract ions with energies of a few 10's of keV and accelerate that beam over several metres.
- Laser-target system accelerates ions to MeV energies over distance of 100's of μm – space charge effect is much reduced.

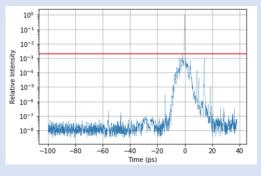

4 Objectives

Simulation Scapa Diagnostics Tests High rate tests

Experiments & Technology Development in 2-year Programme: Characterising Source and Benchmarking Simulations

Established Targetry...moving toward Hz-level targetry

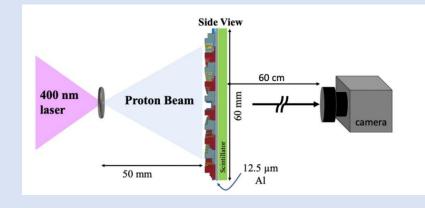

Typical 9-target array


Tape targetry system (online in SCAPA 2022)

....to build a systematic parameter space map of the source performance

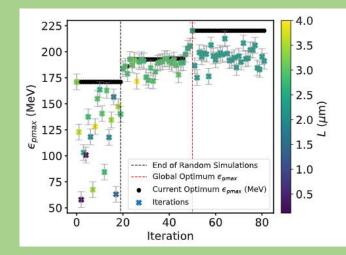
• Energy, Flux, Divergence across multiple ion species

..but also need to consider some other experimental contributions like temporal contrast


Experiments & Technology Development in 3-year Programme: Producing a stable, high-rep source

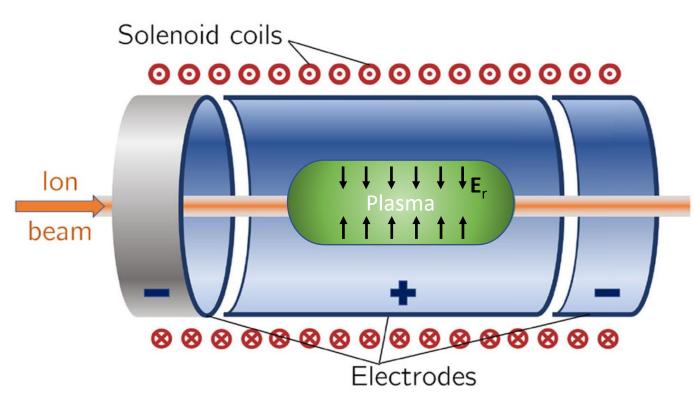
Courtesy of C. Palmer

- Reduces production of debris
- Increases operational time and possible rep rate

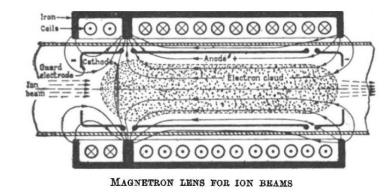

Advanced Particle & Laser Diagnostics

D. Marsical *et al.*, Plasma Phys. Control. Fusion 63 (2021) 114003

- Implementation of advanced (existing) particle diagnostics, taking account of long term operation.
- Implementation of full laser diagnostic suite to support automation, stabilisation.


ML/AI Control & Optimisation

- Application of ML techniques (e.g Bayesian Optimisation) for parameter space
- Application of AI techniques (DNNs, CNNs) for system control and virtual diagnostics

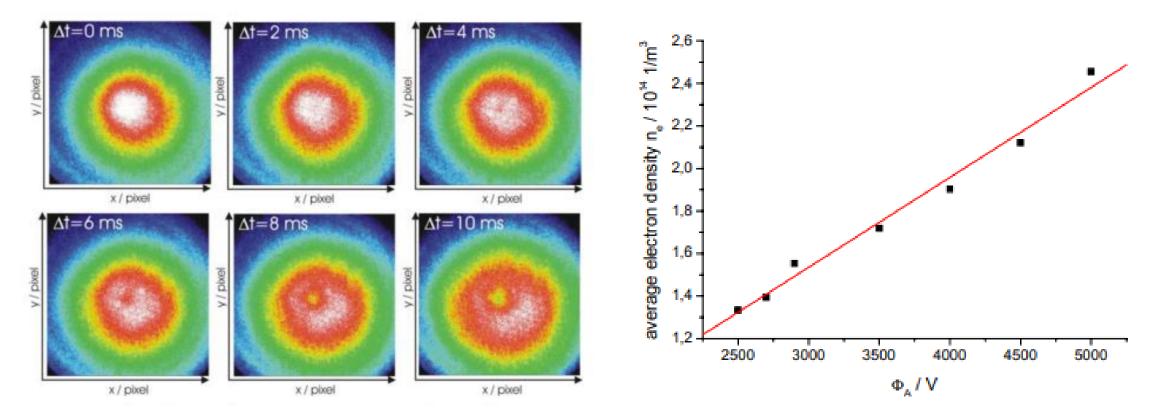

Number	Name	Description	Likelihood	Impact	Score	mitigation	Mitigated Likelihood	Mitigated Impact	Mitigated score
1	PM - Unable to secure laser beamtime	SCAPA schedule does not allow for beamtime access	2	4	8	Pay for beamtime access/ Perform scaled experiments at other laser	2	3	6
2	Laser - Technical issues with laser prevent access	SCAPA/Imperial laser has technical issues that cause delays	3	4	12	systems (e.g. Imperial) Use different laser facility for similar experiments/ pay for beamtime access	3	3	9
3	Simulations - Insufficient HPC resource	Simulations take long or are more costly than planned	1	3	3	Included mitigation costs to pay for access to the Hartree HPC system	1	0	0
4	Source output - Energy	Unable to deliver sufficient beam energy from source	2	4	8	Early testing regime. Adjust laser cond	2	2	4
5	Source output - Intensity	Unable to deliver sufficient beam intensity.	3	3	9	Early testing regime. Multiple shot treatment	3	2	6
6	Source output - divergence	Unable to capture sufficient particles in beam due to un/mis understood source dynamics	3	3	9	Early testing regime. Close engagement with WP3	3	2	6
7	Source output - particle type	C6 / other ion yield low	4	3	12	Investigate experimental techniques to increase yield (i.e target cleaning)	4	2	8
8	Source output - stability is too low	Source parameters are unstable shot-to-shot	4	4	16	Apply active stabilisation techniques	4	2	8
9	Source design - Target debris	Target debris for optimal source is too high for long term operation	2	4	8	Reduce target thickness, capture as much debris as possible	2	2	4
10	Source design - activation	Unsustainable activation of materials surrounding interaction	2	4	8	Change design to minimise potential for activated materials around interaction point	2	2	4
11	Source design - vacuum	Targetry unable to perform in vacuum required by capture system	2	4	8	Design differential pumping system capable of maintaining adequate vacuum levels	2	2	4

WP3 - Proton and Ion Capture Gabor lens

A Space-Charge Lens for the Focusing of Ion Beams

Some time ago I proposed a magnetron of special design as a divergent lens for electron beams¹. It now appears that the same device may become useful as a very powerful concentrating lens for positive ions, particularly for ion beams of extreme energy.

The focal length of a Gabor lens of length l is given in terms of the electron number density by:


$$\frac{1}{f} = \frac{e^2 n_e}{4\epsilon_0 U} l; \tag{1}$$

where e is the magnitude of the electric charge of the electron, n_e is the number density of the electrons confined within the lens, ϵ_0 the permittivity of free space, and U the kinetic energy of the particle beam.

doi: 10.1038/160089b0 doi: 10.3389/fphy.2020.567738

Stability

Density

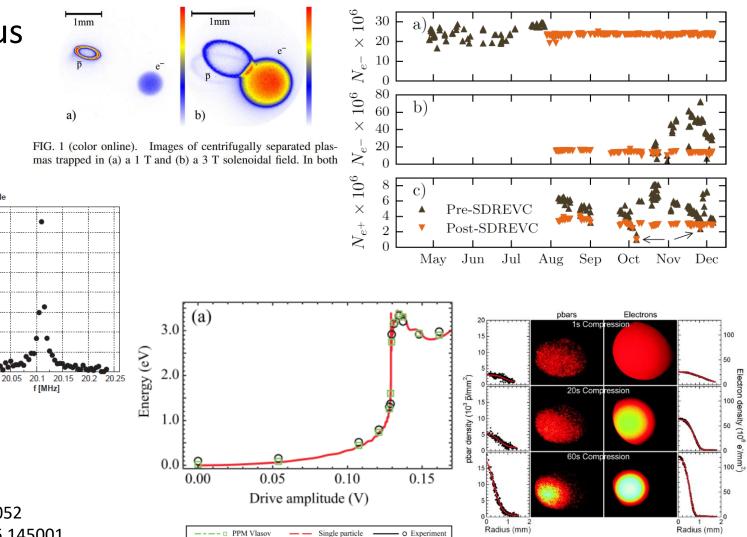
Objectives.

Initial experiments – establish stable high 'fill factor' plasmas Phase 2. New apparatus to access higher densities - Tests at SCAPA

Plasma in ALPHA for \overline{H} production

Dipole Mode

0.016


0.014

0.01

0.004

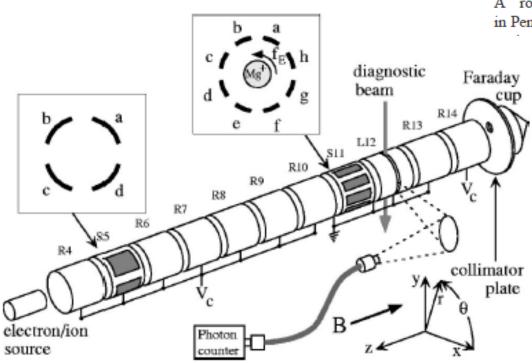
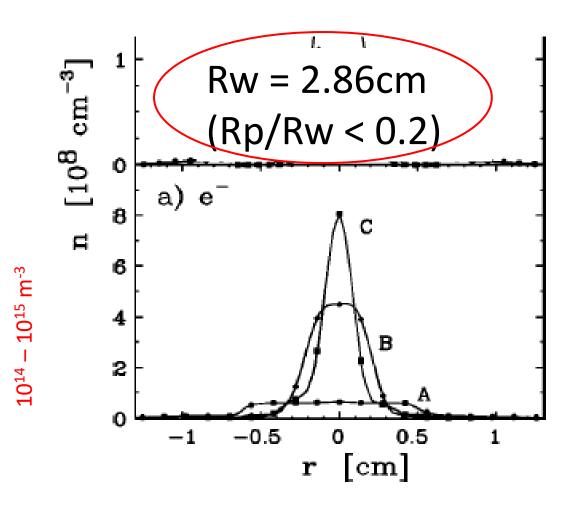
- E-field & large radius deleterious
 - Low density
 - Small radius
- Experimental diagnosis
 - MCP imaging
 - Mode analysis
- Modelling
- Manipulation techniques
 - Cooling (evaporative)
 - Rotating wall
 - Feedback/damping

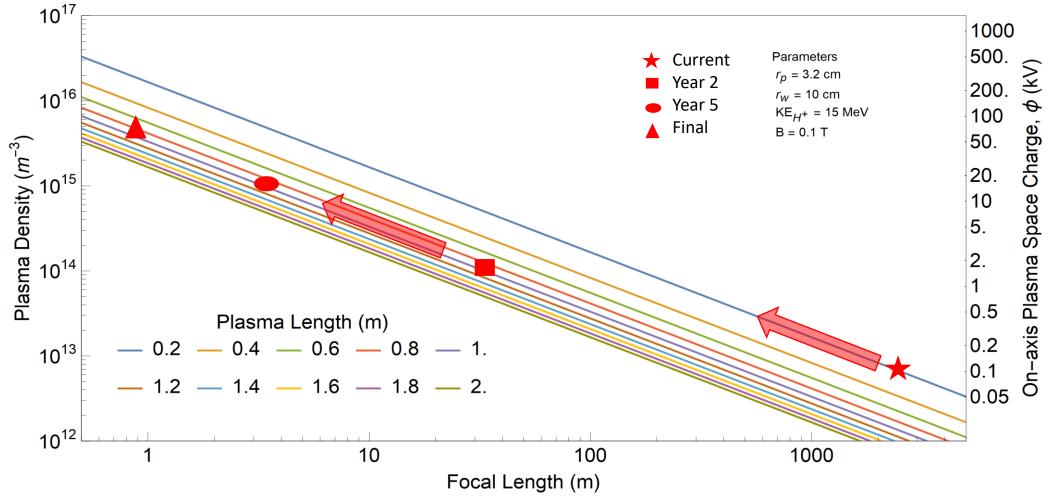
doi: 10.1103/PhysRevLett.120.025001doi: 10.1016/j.nima.2003.09.052doi: 10.1063/1.4801067doi: 10.1103/PhysRevLett.106.145001doi: 10.1103/PhysRevLett.100.203401doi: 10.1103/PhysRevLett.106.145001

Phys. Plasmas, Vol. 7, No. 7, July 2000 2776

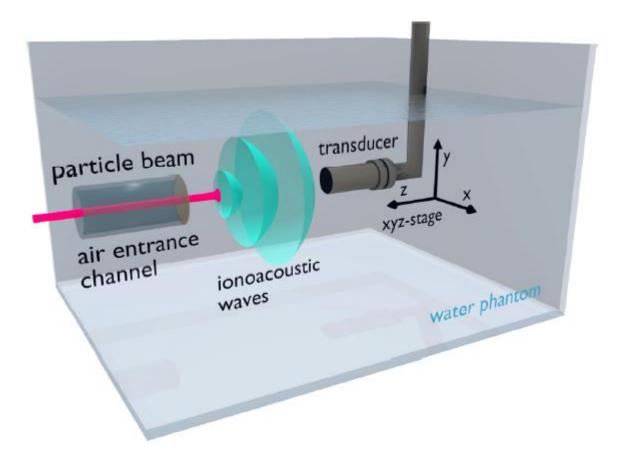
Confinement and manipulation of non-neutral plasmas using rotating wall electric fields

E. M. Hollmann, F. Anderegg, and C. F. Driscoll


FIG. 1. Schematic of the IV Penning–Malmberg trap used for electron and ion plasma experiments. Electrons are typically confined in the region S5 \rightarrow S11; Mg⁺ ions (shown) are typically confined in the region S11 \rightarrow R13. A laser diagnostic is used for ion plasmas; a collimator plate and Faraday cup diagnostic is used for electron plasmas. Azimuthally-dependent modes are driven and detected with sectored rings (S5 and S11).

A "rotating wall" perturbation technique enables confinement of up to 3×10^9 electrons or 10^9 ions in Penning–Malmberg traps for periods of weeks. These rotating wall electric fields transfer torque


Year 5 milestone

LhARA Gabor Lens Parameters

Plasma initialisation	Slow load / long stabilisation time	3	3	9	Design / Purchase improved electron source	3	1	3	Interplay between various experimental components prevents this being known for sure a priori	Yr 1, 3	Yr 3
Plasma lifetime	A short lifetime might adversely effect the ability to suitably study the plasma	3	4	12	Careful design and study to increase lifetime. Multiple causes can be identified:	3	3	9			
Plasma Density	A low density will result in too long a focal length (& beamline)	4	4	16	Careful design and study to ensure a suitable density can be reached:	4	3	12			
Acceptance	An insufficiently large plasma radius to focus all the ion beam	3	3	9	Increase electrode radius		2	6	Increasing the electrode radius to accommodate a larger plasma radius maintains a plasma to wall radius ratio <<1, a well studied parameter regime. Although initial designs will have large radii electrodes, these can be increased further, perhaps with vacuum system & confining solenoid redesign. As initial plans intend to use exisiting solenoids (at Swansea & Strathclyde), the	Yr 4	Yr5+
Delivery delays	Delays in sourcing / receiving equipment	3	3	9	Appropriate personnel to source off-the- shelf equipment		2	6	Although bespoke apparatus might be available commercially, it can often be time consuming to source a suitable supplier (considering competency, cost, & leadtime).	Yr 1, 3	Yr 3

Ion Acoustic Dose Mapping

- Is it possible to get the deposited dose using acoustic measurements ?
- Compatibility with medical ultrasound and possibility of use in vivo

Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy W. Assmann, S. Kellnberger, S. Reinhardt, S. Lehrack, A. Edlich, P. G. Thirolf, M. Moser, G. Dollinger, M. Omar, V. Ntziachristos, and K. Parodi

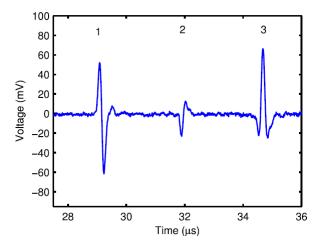


Fig. 2. Example of an ionoacoustic signal from a 110 ns ion pulse with 2×10^6 protons, recorded with a 3.5 MHz ultrasound transducer (pulse average of 16 samples, see also text).

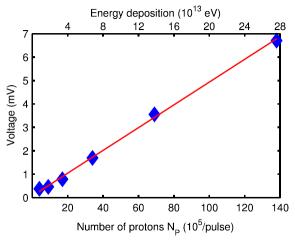
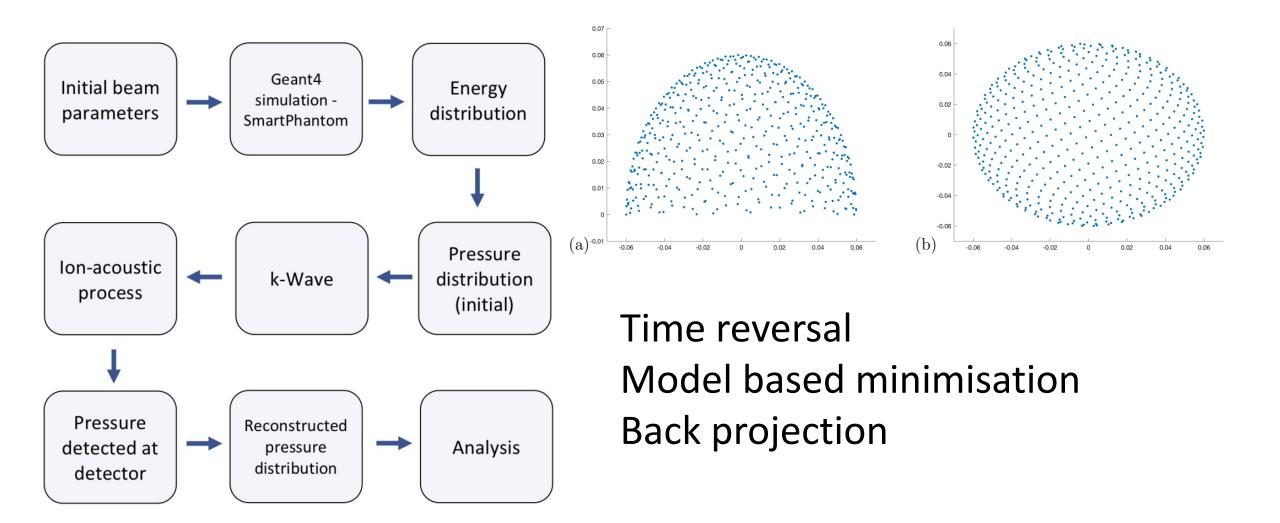
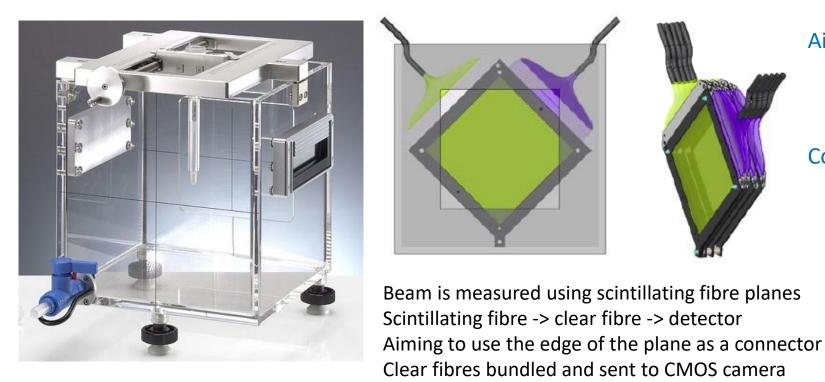
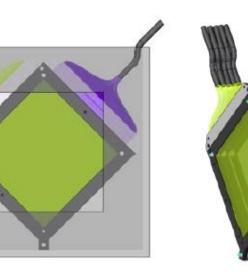




FIG. 5. Acoustic signal amplitude of a 473 ns proton bunch (16 pulses average) as function of particle number and total energy deposition per pulse, along with a linear polynomial fit (red line).

Ion Acoustic imaging

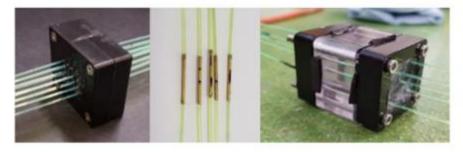
The SmartPhantom



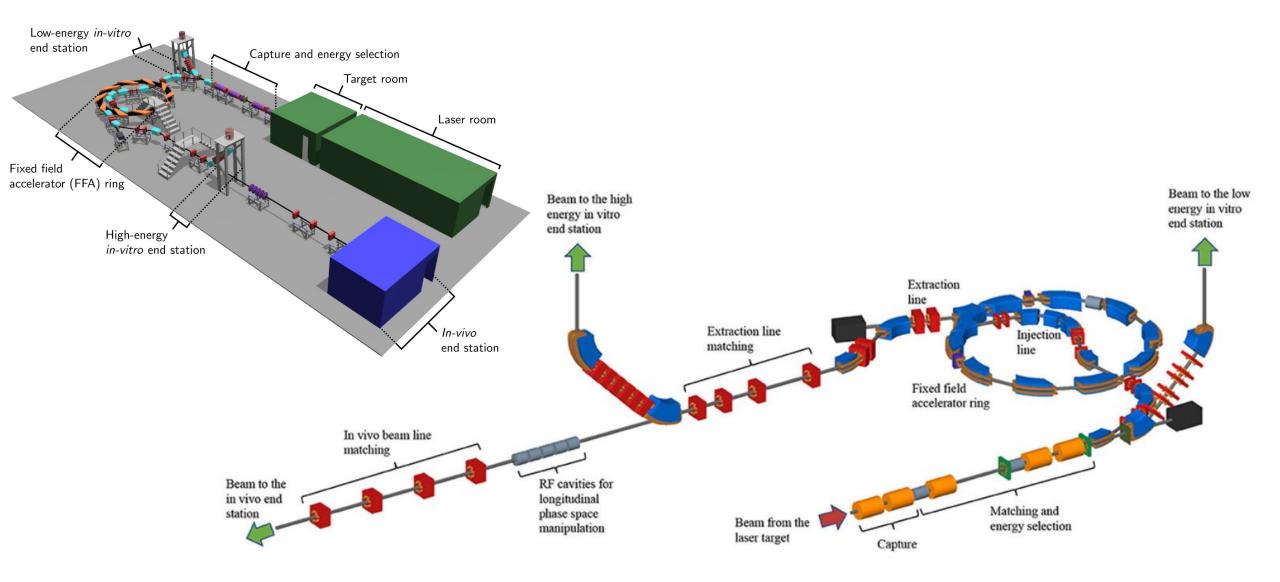
Water-filled phantom useful for protons, few 10s of MeV up

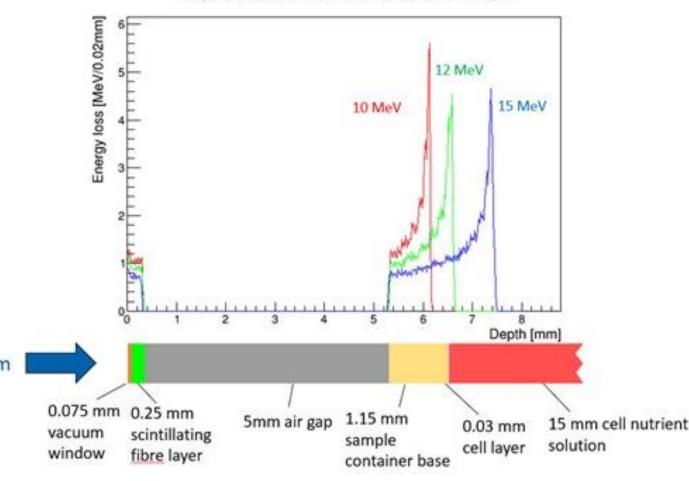
www.ptwdosimetry.com http://www.k-wave.org/ https://geant4.web.cern.ch/ SmartPhantom is a tool go on the endstations, to compare simulations of beam interactions with experiment

For faster readout, could use photodiodes


From: Medical Applications for Particle Physics (PhD Thesis), H.T.Lau, Imperial College (2021)

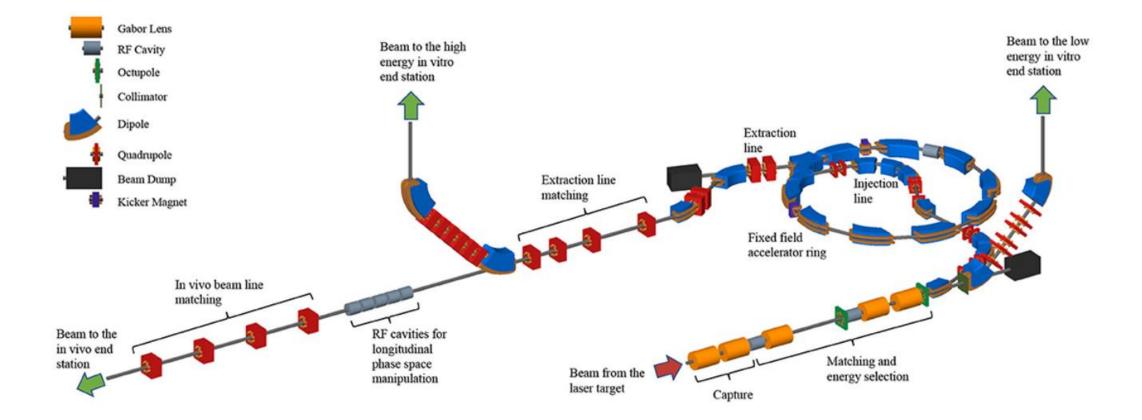
Aim is to compare measurements: proton acoustic scintillating fibre dosimetry Compare measurements & simulations: protons in water (GEANT4) protons in detectors (GEANT4) acoustic signals (k-Wave)



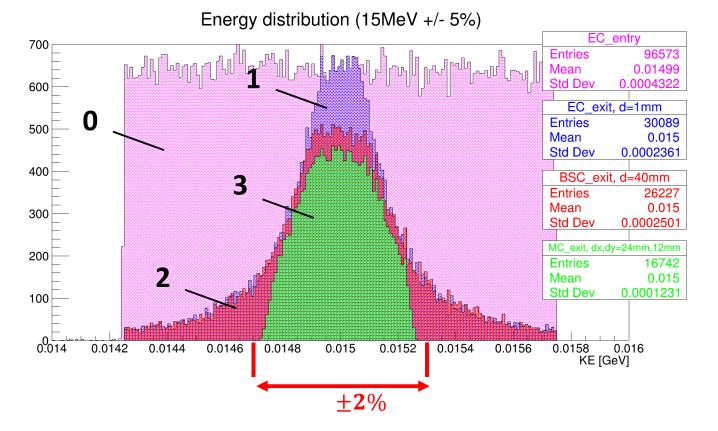

Methods of joining fibres – Jeff Sykora, ISIS

Low acoustic signal	Insufficient acoustic signal to noise ratio (SNR) (i.e., low amplitude acoustic emission)	3	5	15	Frequency optimisation, large sensor elements in a prefocused large array, 1024 elements for noise averaging, averaging over multiple pulses, adaptive reconstruction with priors and optimisation of frequency with element location, adaptively trade dose-map resolution for SNR	3	3	9
Low resolution	Insufficient dose-map spatial resolution (due to loss of high frequency components via attenuation or acoustic scattering)	4	3	12	Predominantly water-path propagation, model-based solutions, replace real- time dose mapping with off-line characterisation (as is done in radiobiology currently).	1	4	4
Sample holders	Multi-well sample holder unsuitable due to lack of field of view/acoustic access/acoustic reverberations	4	3	12	2D and 3D spatial biology readout, reduce throughput, use single samples on conveyor/robot.	2	2	4
смоя	CMOS approach not adequate for scintillator field standard	3	2	6	Higher cost splicing solution possible.	3	1	3
		1	2	2	Sheilding of experiment, use of optical fibre connection between electronic components, use of optical sensors.	1	4	4
Beam Line access	Lack of access to validation beam line	5	3	15	Several possible sources	3	3	9
		2	3	6	This WP has been designed to provide results which adapt to the modelling outputs of other WPs. A modelling coordinator will be appointent across all such WPs.	1	3	3
Overall project delay	Lhara construction running late - no final testing	2	4	8	Alternative sources that are similar - Avo, Lawerence Berkley?	1	4	4
Staff recruitment	Not being able to recruit people	2	4	8	Re-prioritise/limit tasks so that most important achievements may be met with fewer staff members	1	4	4
	signal Low resolution Sample holders CMOS Interference Beam Line access Lack of information from collaborators Overall project delay Staff	Low acoustic signal(SNR) (i.e., low amplitude acoustic emission)Low resolutionInsufficient dose-map spatial resolution (due to loss of high frequency components via attenuation or acoustic scattering)Sample holdersMulti-well sample holder unsuitable due to lack of field of view/acoustic access/acoustic reverberationsCMOSCMOS approach not adequate for scintillator field standardInterferenceInterference from RF noise (unlikely to matter as likley to be 1 GHz) and/or pulse switching transientsBeam Line accessLack of access to validation beam lineLack of information from collaboratorsDependency on other WPs to provide information regarding Lhara in time testingOverall project delayLhara construction running late - no final testingStaffNot being able to recruit people	Low acoustic signal(SNR) (i.e., low amplitude acoustic emission)3Low resolutionInsufficient dose-map spatial resolution (due to loss of high frequency components via attenuation or acoustic scattering)4Sample holdersMulti-well sample holder unsuitable due to lack of field of view/acoustic access/acoustic reverberations4CMOSCMOS approach not adequate for scintillator field standard3Interference matter as likley to be 1 GHz) and/or pulse switching transients1Beam Line accessLack of access to validation beam line5Lack of information from collaboratorsDependency on other WPs to provide information regarding Lhara in time2Overall project delayLhara construction running late - no final testing2	Low acoustic signal(I.e., low amplitude acoustic emission)35Low resolutionInsufficient dose-map spatial resolution 	Low acoustic signal(SNR) (i.e., low amplitude acoustic emission)3515Low resolutionInsufficient dose-map spatial resolution (due to loss of high frequency components via attenuation or acoustic scattering)4312Sample holdersMulti-well sample holder unsuitable due to lack of field of view/acoustic access/acoustic reverberations4312CMOSCMOS approach not adequate for scintillator field standard326Interference matter as likley to be 1 GHz) and/or pulse122Beam Line accessLack of access to validation beam line5315Lack of information rom collaboratorsDependency on other WPs to provide information regarding Lhara in time collaborators248StaffNot being able to recruit neople248	Low acoustic signalInsufficient acoustic signal to nose ratio signal3515elements for noise averaging, averaging over multiple pulses, adaptive reconstruction with piors and optimisation of frequency with element location, adaptively trade dose-map resolution of SNRLow resolutionInsufficient dose-map spatial resolution (due to loss of high frequency components via attenuation or acoustic scattering)4312Sample holdersIoak of field of view/acoustic scattering4312Sample holdersIoak of field of view/acoustic scattering4312CMOSCMOS approach not adequate for scintillator field standard326Interference interference interferenceInterference from RF noise (unlikely to information pendents)122Sheilding of experiment, use of optical fibre connection between electronic components, use of optical sensors.Beam Line collaboratorsLock of access to validation beam line5315Several possible sourcesLock of informationDependency on other WPs to provide information regarding Lhar in time236This WP has been designed to provide results which adapt to the modelling outputs of other WPs. A modelling coordinator will be appointent across all such WPs.Overall project delaythara construction running late - no final project delay248Alternative sources that are similar - Avo, Lawerence Berkley?Staffbet being able to percents may be met with	Low accustic signalInsufficient accustic signal to noise ratio signal3515elements for noise averaging, averaging over multiple pulses, adaptive reconstruction with prices and optimisation of frequency with element location, adaptively trade dose-map resolution of SNR3Low resolutionInsufficient dose-map spatial resolution (due to loss of high frequency components va attenuation or accustic scattering)4312Predominantly water-path propagation, model-based solutions, replace real- time dose map ping with off-line characterisation (as is done in radiobiology currently).1Sample holdersMulti-well sample holder unsuitable due to ack of field or view/accustic43122D and 3D spatial biology readout, reduce throughput, use single samples on conveyor/robot.2CMOSCMOS approach not adequate for scintiliator field standard326Higher cost splicing solution possible.3Interference from matter as likkey to be 1 Girl2 and/or pulse122Shellding of experiment, use of optical fibre connection between electronic components, use of optical sensors.1Beam Line collaboratorsLow frequency on other WPs to provide information pendency on other WPs to provide project delay315Several possible sources3Overall project delayLhara construction running late - no final project delay248Alternative sources that are similar - Avo, Lawerence Berkley?1StaffNet being able to regring the opendence construction running late - no final project delay2	Low accustic insufficient acoustic signal to noise ratio signal351elements for noise averaging over multiple pulses, adaptive ireconstruction with priors and optimisation of frequency with element33Low isignalInsufficient dose-map spatial resolution (due to loss of high frequency components4312Predominantly water-path propagation, model-based solutions, replace real- iccurrently).14Sample holdersMulti-well sample holder unsuitable due to lack of field of view/acoustic cacess/acoustic reverberations431220 and 30 spatial biology readout, reduce throughput, use single samples on conveyar/robot.22CMOSCMOS apprach not adequate for scintillator field standard326Higher cost splicing solution possible.14Interference matter as likely to be 1 GH2 and/or pulse collaborators1222Sheliding of experiment, use of optical fibre connection between electronic connection sensors.14Beam Line collaboratorsDependency on other WPs to provide from collaborators2333Cwerall project delayLack of access to validation beam line236This WP has been designed to provide results which adapt to the modelling such wys. A modelling coordinator will be appointent across all such wys.133Cwerall project delayLack of access to validation beam236Fils WP has been designed to provide results which adapt to the modelling such WPs.14Cwer

WP5 – End station development & Instrumentation


- User engagement Peer group consultation.
- Automated Handling
- Controlled atmosphere
- Acoustic Imaging
- Cellular imaging
- In-vivo irradiation
- MC40 cyclotron operation for testing and de-risking.
- Beamline instrumentation
- Gas jet beam profiler.
- Dosimetry verification

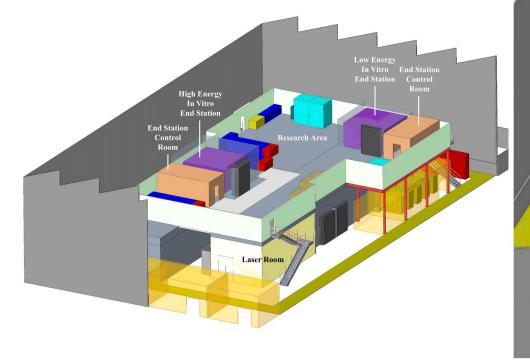
Energy loss as a function of depth for different beam energies

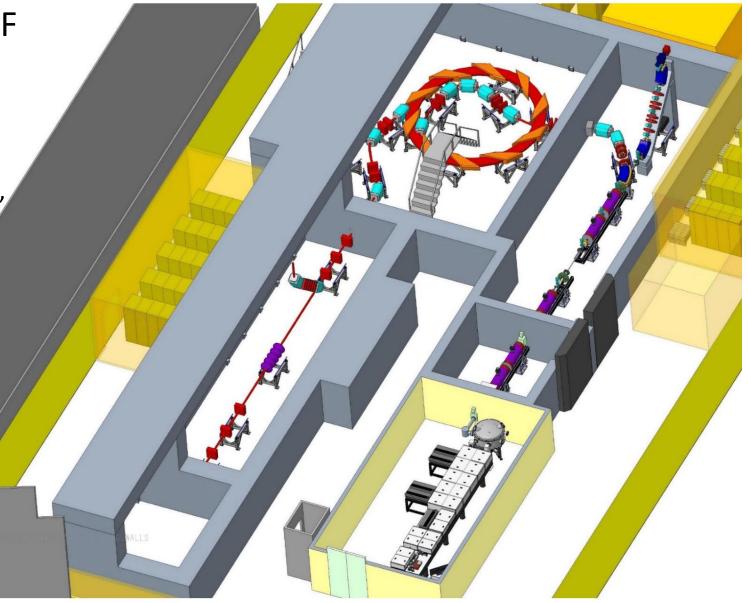

Number	Name	Description	Likelihood	Impact	Score	Mitigation	Mitigated Likelihood	-	Mitigat ed score
1	End Station Specification	End station specification does not clearly specify requirements.	5	5	25	Approved escalation route from light corporal discipline to public vilification on social media	1	5	5
2	Beam instrumentatio n	Beam instrumentation specification and delivery delays	3	3	9	Progress montoring and effort supplementation from LhARA project expertise	2	3	6

WP6 – Facility design and integration

Controlling energy spread in LhARA

- 3 collimators ٠
 - Energy collimation 1)
 - Beam shaping 2)
 - 3) Momentum cleaning
- Momentum cleaning is required to ٠ remove the tails of energy distribution


Schematic of the accelerator


Facility – planning - development

Ion therapy Research Facility ITRF

£2M budget, of which

- £1.5M LhARA as presented
- £500k Facility Engineering plus alternative technologies. 3.35FTE: Mechanical, Electrical, Controls, Tech Services, Vacuum, Radiation Protection

Number	Name	Description	Likelihood	Impact	Score	Mitigation	Mitigated Likelihood	Mitigated Impact	Mitigated score
1	Fixed Field Accelerator (FFA)	FFA does not deliver parameters in performance specification.	3	5	15	Continue R&D on the critical item that is the FFA spiral magnet. Construct a prototype before production of 10	1	5	5
2	Gabor lens performance	Gabor lens does not deliver parameters in performance specification.	4	5	20	Continue a R&D plan that involves the construction of a prototype Gabor lens and have a back up plan available that uses solenoid magnets in the place of	2	5	10
3	MA Cavity construction	Delay or technical difficulties in construction of Magnet Alloy (MA) cavity	5	4	20	Establish close collaboration with CERN, J-PARC & KURNS institutes, where similar systems have been constructed and are in operation. Component parts	5	1	5
4	Injection and extraction magnets	Insufficient availablility of injection and extraction magnets suppliers.	3	4	12	Design and construct of injection and extraction magnets by STFC national laboratorie expertise. Component parts manufactured by industry.	3	2	6
5	Facility infrastructure	Facility infrastructure is not fit for purpose.	4	4	16	Include facility infrastructure design during the Conceputal Design Report (CDR) stage to provide a fit for purpose design that will inform the project cost and schedule	1	4	4
6	Radiation protection	Radiation bulk shielding thickness, labyrinths and services penetrations are inadequate to meet specification.	4	5	20	Conduct radiation protection assessment during the CDR phase of the project to satisfy safety leglislation and identify construction method to inform cost and schedule.	1	5	5

Top Level Risks

	Number	WP Number	Name	Description	Likelihood	Impact	Score	Mitigation	Mitigated Likelihood	Mitigated Impact	Mitigated score
WP1	1	1.5	Resources	Insufficient resources secured to deliver the project aims, project scope, quality or specifications to the required timescale.	5	4	20	Request adequate resources based on experience of delivering similar multidicipline facilities with comparable technical complexity. Use pre - CDR outputs to inform work towards Conceptual Design Report (CDR).	4	4	16
WP1	2	1.3	Performance specification parameters	Inadequate ion beam parameters specification to meet the Physics and Biolology requirements for the facility.	3	5	15	The project consortium consists of all the multidiscipline experts to understand the required parameters.	2	5	10
All	3	9	Key specialist staff	Availability of key specialist staff critical to delivering the project.	4	5	20	Identify potential single point failure risks, apply cover and succession planning where appropriate.	2	5	10
WP2	4	2.7	Source output	Unable to deliver desired beam.	4	3	12	Investigate experimental techniques to increase yield	4	2	8
WP2	5	2.1	Source design - activation	Unsustainable activation of materials surrounding interaction	2	4	8	Change design to minimise potential for activated materials around interaction point	2	2	4
WP3	6		Plasma Density	A low density will result in too long a focal length (& beamline)	4	4	16	Careful design and study to ensure a suitable density can be reached:	4		
WP4	7	4.1	Low acoustic signal	Insufficient acoustic signal to noise ratio (SNR) (i.e., low amplitude acoustic emission)	3	5	15	Frequency optimisation, prefocused large array, averaging over multiple pulses, adaptive reconstruction with priors and optimisation of frequency with element location. Adaptively trade dose-map resolution for SNR	3	3	9
WP6	8	6.6	Facility Integration	Delayed start/insufficient early resource to progress Integration work	3	5	15	Prioritise integration work package	1	4	4
WP5	9	5.1	End Station Specification	End station specification does not clearly specify requirements.	5	5	25	Approved escalation route from light corporal discipline to public vilification on social media	1	5	5

LhARA - Project organisation

- WP1 Project management
- WP2 Laser Driven proton and ion source
- WP3 Proton and Ion Capture
- WP4 Real-time dose-deposition profiling
- WP5 End station development & Instrumentation
- WP6 Facility design and integration

Project management

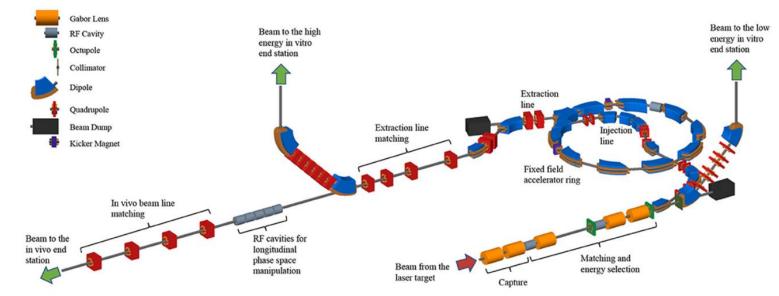
All the boring but essential planning and organisation, but also..

Engagement and outreach:

Stakeholder

Peer group User community

> Public Patient


Diversification of LhARA funding

		القا م أما قا م	* * 1	3 I M M																				- 1 Z 1		210	
	Pi Pojot Mangement																							_			-
	Facility Program Review 128																										_
	Interim Fragma Retriev 204 Fee-138 Retriev					- " `																					
	con Pro Fish Review								- T			14 N															
	Fig. Field April 10																										
	Early Program Review Table Instrum Program Review Table																										
	Fe 1982 Aurilee																						- T		an.	s	
	*		_			_			_			_					_			_			_				_
	ally be aligned and activate molecity of the prijer.		_			_			_			_		_			_			_			_				-
	4.3 Depression and Advess of regards for effective (FPC and Second second).		_			_			_			_					_			_			_				_
	Table fair and g	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																								1.1	
	which have in a range is																										
	subsched harting 1																										
	Industrial Acad Academys 4			1.1																							
	table has i write it.					-																					
	this hard working 12																										
	mint noting to																										
	hard number in																										
	et northy D																										
	Carrie 2 Carrie 2																										
	Table 1																										
	with a																										
	autop it																- 11										
	array 2																										
	norma il																										
	and a																										
	NUMBER OF																					-					
																										1.0	
	ing H		_											_						-							_
					_		_	_	_	_	_		_	-		_		_		_	_	_	_			_	_
	netty		- n			1																					
	nanting					- 11			- H			- U															
						- 11			- 11			n –		- H			- 11										
														- T I			- 14			5							
	N					- 11			- 11			11											>				
						- 11			- 11			11														1	
															-										-	-	-
			13			11			- 11			- 11		- 11			- 11			11			11			1	
						11			- 14																		
									11			18															
												1		- P	r		- U										
																	- I'			14			11				
												1					- I						11			÷	
												- L - L													. L.		
																	- P										
	interpretation		=			-			-			-		_						-			1				
	fill propera materia 3		- 7.			-			_																		
									_			_															
	e pages special													_			_										
	and proper sports is																_			-							
	contra proprio signito il contra proprio signitto il																						1				
	Calify propersy reports 10																								-1		
			- 1			1			1			1.1		- 1			- 1			1				1.1	- 1		
		· · ·	J.																								
						1																					
	N. P								2																		
												×															
	4.2																										
· · ·																											
	12																							1.1			
	ing II																										
	and a	the second second			1.1	1.00	1.00	1.00	1.1.1.1		1.11		1.00	1.11	1.11					1.1.1	1.11	A 14 14	1.1.1				
	A LEWIS CO.																										
	•																										
		1.1.2.1.1.1	1.1		10.1	1.1		1.1	1.1	1.11		1.1.1	1.12	1 A -					1.2.2.	10.00			1.1.1	1.1		1.1	
	interrupt of substrate.																										
			_	_	_	_	_	_	_	_	_	_	_	_		_	_	_		_	_	_		_	_	_	-
			_		_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_		_	_	-
	-			_																							
																			1								
			_																								
			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	-

	Number	WP Number	Name	Description	Likelihood	Impact	Score	Mitigation	Mitigated Likelihood	Mitigated Impact	Mitigated score
WP1	1	1.5	Resources	Insufficient resources secured to deliver the project.	5	4	20	Pursue additional sources of funds.	4	4	16
WP1	2	1.3	Performance specification parameters	Inadequate ion beam parameters to meet the Physics and Biolology requirements.	3	5	15	The project consortium includes the required experts to improve performance and adapt requirements to maximise convergence of capability and need.	2	5	10
All	3	9		Availability of key specialist staff critical to project.	4	5	20	Identify potential single point failure risks, apply cover and succession planning where appropriate.	2	5	10
WP2	4	2.7	Source output	Unable to deliver desired beam.	3	4	12	Investigate experimental techniques to increase yield	2	2	4
WP2	5	2.1	Laser Access	Laser schedule does not allow sufficient access.	3	4	12	Apply for access to other, similar, laser systems e.g Gemini	2	3	6
WP3	6		I Plasma Density	A low density will result in too long a focal length (& beamline)	4	4	16	Expert experimental design coupled with established and novel mitigation measures	4	3	12
WP4	7	4.1	Low acoustic signal	Insufficient acoustic signal to noise ratio.	3	5	15	Employ range of established techniques. Adaptively trade dose- map resolution for enhanced signal	3	3	9
WP6	8	6.6	Facility Integration	Delayed start/insufficient early resource.	3	5	15	Prioritise integration work package	1	4	4
WP5	9	5.1		End station specification does not clearly specify requirements.	5	5	25	Early progress review, input from system designers to user consultation exercise	1	5	5

Work Package Managers : Expectations

- Progress meetings ever 2 weeks, plus any extra required – minuted on Wiki
- Monthly update to LhARA PM to STFC PRC
 - Simple format fill the blanks.
- Milestones
- Collaboration Meetings
- Deliverables.

wiki: Research / DesignStudy / ITRF / Documents

Attach file

- Research/DesignStudy/ITRF/Documents/PA1
- Research/DesignStudy/ITRF/Documents/PA2?
- Research/DesignStudy/ITRF/Documents/Construction?

LhARA Wiki

Edit this page

wiki: Research / DesignStudy / ITRF / Documents / PA1

- Research/DesignStudy/ITRF/Documents/PA1/WP1.1 LhARA Project management
- Research/DesignStudy/ITRF/Documents/PA1/WP1.2 Laser driven proton and ion source
- Research/DesignStudy/ITRF/Documents/PA1/WP1.3 Proton and ion capture
- Research/DesignStudy/ITRF/Documents/PA1/WP1.4 Ion-acoustic dose mapping
- Research/DesignStudy/ITRF/Documents/PA1/WP1.5 Novel end-station development
- Research/DesignStudy/ITRF/Documents/PA1/WP1.6 Design and Integration
- (wp0) ITRF Project Mangement
- Research/DesignStudy/ITRF/Documents/PA1/wp2 ITRF Facilities and Costing work package management
- Research/DesignStudy/ITRF/Documents/PA1/wp3 Conventional Technology work package management
- Research/DesignStudy/ITRF/Documents/PA1/she? Safety Health and Environment
- Research/DesignStudy/ITRF/Documents/PA1/CERN? CERN
- Research/DesignStudy/ITRF/Documents/PA1/ac Advisory Committee
- Research/DesignStudy/ITRF/Documents/PA1/Para? LhARA Parameters
- Research/DesignStudy/ITRF/Documents/PA1/CDR? Conceptual Design Review
- Research/DesignStudy/ITRF/Documents/PA1/ITRF? Documents copied to ITRF Server

Edit this page Attach file

Powered by Trac 1.0.13 By Edgewall Software.

viki: Research / DesignStudy / ITRF / Documents / PA1 / WP1.1

Research/DesignStudy/ITRF/Documents/PA1/WP1.1/agn Agendas

- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/cal? Calculations
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/code? computer program/code/source etc.
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/dsn? Design Notes
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/dwg? Drawings
 Research/DesignStudy/ITRF/Documents/PA1/WP1.1/est? Estimates
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/est? Estimate
 Research/DesignStudy/ITRF/Documents/PA1/WP1.1/fig? Figures
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/ing: Figures
 Research/DesignStudy/ITRF/Documents/PA1/WP1.1/fin? Finance
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/fea? Finite Element Analysis
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/form? Forms and templates
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/min? Minutes
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/misc? Miscellaneous
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/news? Bulletins/newsletters
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/pho? Photographs
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/pmp? Project plans
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/proc? Procurement
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/prop? Proposals
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/prs? Presentations
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/ppl? Project plans (schedules)
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/press? Press notes
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/qual? Quality Assurance
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/ref? Referecen documentation
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/res? Resources
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/rev? reviews
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/risk? risk management
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/rpt Reports
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/sch? schematics
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/spec? Specifications
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/str? Strategy
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/tbl? Table
 Besearch/DesignStudy/ITRF/Documents/PA1/WP1.1/tbl? Table
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/tn? Technical Note
- Research/DesignStudy/ITRF/Documents/PA1/WP1.1/tend? Tender Documentation

Edit this page Attach file

Documentation

Level1-level2-level3-level4-number-version-description.document type ITRF – pa1 – wp1.1 – rpt – 0002 – v0.3 – LhARA document naming convention.docx

Documents generated by the LhARA collaboration that are to be stored in the ITRF documentation store must be converted to .pdf format. The copy on the ITRF server must be treated as a **read only pdf copy** that **must not be modified** to avoid multiple copies of the same document, protecting version control.

When a document is to be transferred to ITRF it will be given a second ITRF document name which will be recorded above its original LhARA name. This second name must be recorded in the original LhARA document to link the two documents.

Deliverables

D1. Early review of progress towards CDR.

D2. Interim review of progress towards CDR.D3. Early draft of LhARA CDR.D4. Complete LhARA CDR.

Milestones

A total of 16 spread across 5 work packages – all reviewed at Collaboration meetings and all feeding into above Deliverables.

LhARA Review

Review of the collaboration's "R&D proposal for the preliminary and pre-construction phases"

1st session – 30th August 2022

2nd, 3rd sessions 29th and 30th September

https://ccap.hep.ph.ic.ac.uk/trac/wiki/Research/DesignStudy/Reviews/AugSep2 2/Review