The NIMMS Programme and the He Synchrotron

<u>Elena Benedetto</u>, SEEIIST Association Maurizio Vretenar, CERN 20th September 2022, ITRF Kickoff meeting

The CERN Next Ion Medical Machine Study (NIMMS) leverages on CERN expertise to develop technologies and designs for a new generation of medical accelerators with ion beams

- NIMMS launched (funded) as a Knowledge Transfer initiative in 2018.
- Started ~20y after PIMMS, on which CNAO/MedAustron are based.
- Federating large number of partners and supported by EU programs: HITRI*plus* and iFAST.
- Focuses on developments for ions protons covered by industry
- Partners can use the NIMMS technologies to assemble their own optimized facility.

International partners collaborating with NIMMS: □ SEEIIST Association (Switzerland) □ TERA Foundation (Italy) GSI (Germany) □ INFN (Italy) □ CIEMAT (Spain) Cockcroft Institute (UK) University of Manchester (UK) CNAO (Italy) □ Imperial College (UK) MedAustron (Austria) U. Melbourne (Australia) ESS-Bilbao (Spain) Riga Technical University (Latvia) E. Benedett Sarajevo University (Bosnia &H.)

Next generation ion therapy synchrotrons

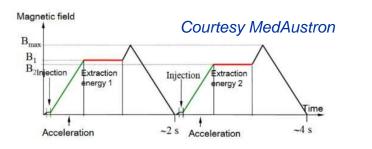
♦ Reduced size, weight, cost

- SC magnets an option

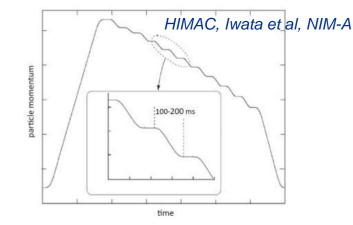
Aulti-ions treatment Vs. optimization for a single ion

- p, He, C, O, all species for research Vs. Helium (and protons) only

♦ Higher (x20) beam intensity for flexible delivery:


- deliver full beam at Multi-Energy in one cycle (Vs. limitation of SC magnet ramp)
- ready for FLASH treatment modalities

♦ Energy efficient


- Check out: G. Bisoffi et al, IPAC22

Flexible beam delivery requires x20 higher intensity

TODAY: Every change of energy \rightarrow A different cycle

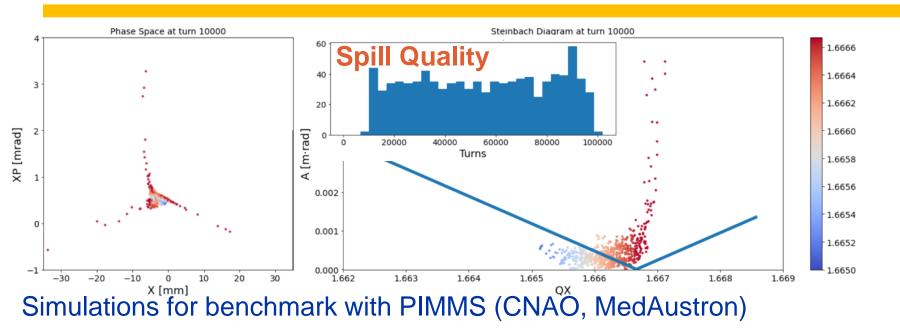
Multi-Energy Extraction going down (up) within same cycle

FLASH: deliver the entire *high intensity* in <200 ms

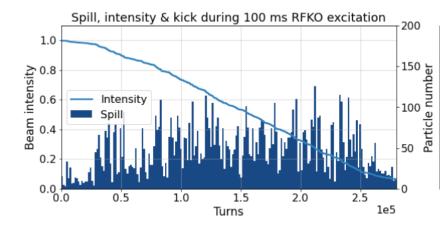
Deliver* 2 Gy in 1 liter tumour

Protons	2.6e11	U. Amaldi
Helium	8.2e10	
Carbon	2e10	

* factor ~2 (efficiencies in dose delivery)

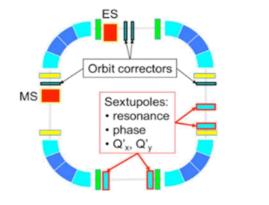

Need:

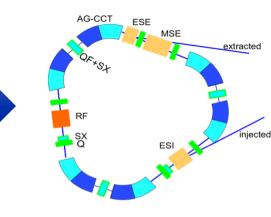
- Multi-turn injection optimized
- □ High-current sources (R&D)
- High-transmission in source/RFQ/linac



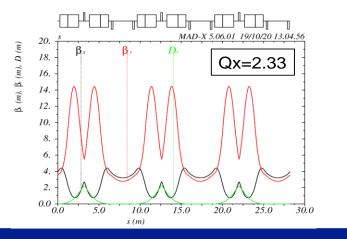
"Fast" slow extraction on the 3rd order resonance

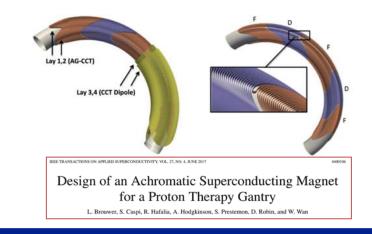
Rebecca Taylor, CERN/Imperial College


FLASH regime, RF-KO extraction Preliminary simulations foresee exciter voltage ~1kW for 10urad (10x beyond hardware capability)



SC-magnet compact ring for C-ions





Developed within HITRI*plus* (E. Benedetto) Evolved to triangular, with 3.5 T 60^o magnets and a SC quadrupole in between. No-dispersion in straight sections (inj, extr, RF)

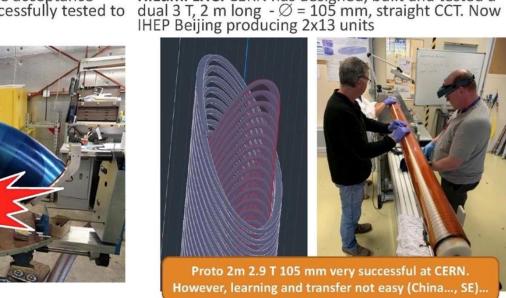
TERA E.Benedetto et al. 2018 https://arxiv.org/abs/2105.04205 © TERA Beam Hoeam MedAustron ~30m length. Optics is flexible with small quads for tune adjustment, carring sextupole + orbit correctors

AG-CCT magnets allow periodic focusing while bending, reducing beta function (and beam size)

20/9/2022 – ITRF Kick-off

SC Strongly-Curved CCT magnets

Nb-Ti CCT: p-gantry and HiLumi LHC


LBNL: CCT coil prototype for large acceptance **proton gantry** Ø = 400 mm: Successfully tested to 3.5 T; segmented former.

Βρ (Tm) B₀ dipole (T) Coil apert. (mm) Curvature radius (m) Ramp Rate (T/s) Field Quality (10⁻⁴) **Deflecting angle Alternating-Gradient** Quad gradient (T/m) B_{quad} peak (T) B_{peak} coil (T) Current (kA) **Temperature (K) Superconductor**

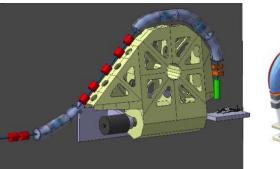
Parameter

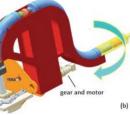
ANNALI I E E	yes 1	
	Prototype	Ring/Gantry magnets
	6.6	6.6
	4-5	3.0
200	60 (90)	70-90
	2.2 , ∞	2.2
200/1	0.15-1	1
	10-20	1-2
ROSS	0 - 45°	90 °
	N/A	yes (triplet)
0	40	40
Sev	1.2	1.54- 1.98
be b	5.6-7	4.6 - 5
	< 5	< 6
	5 (20)	5 (8)
TRF Kick-off	NbTi (curved),	NbTi

HTS (straight)

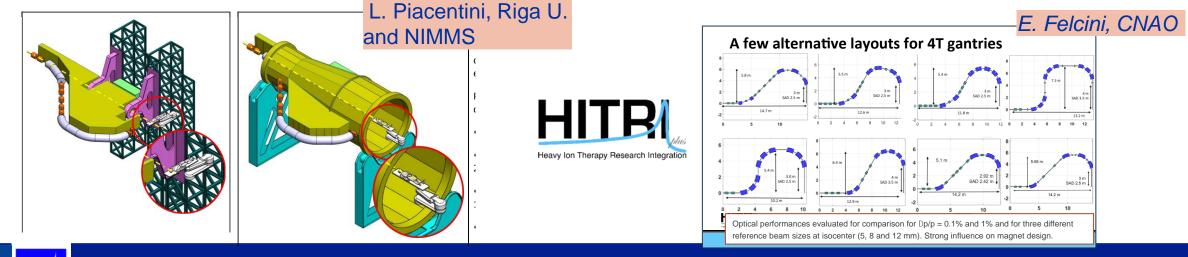
Proto 2m 2.9 T 105 mm very successful at CERN. However, learning and transfer not easy (China..., SE).

HiLumi LHC: CERN has designed, built and tested a

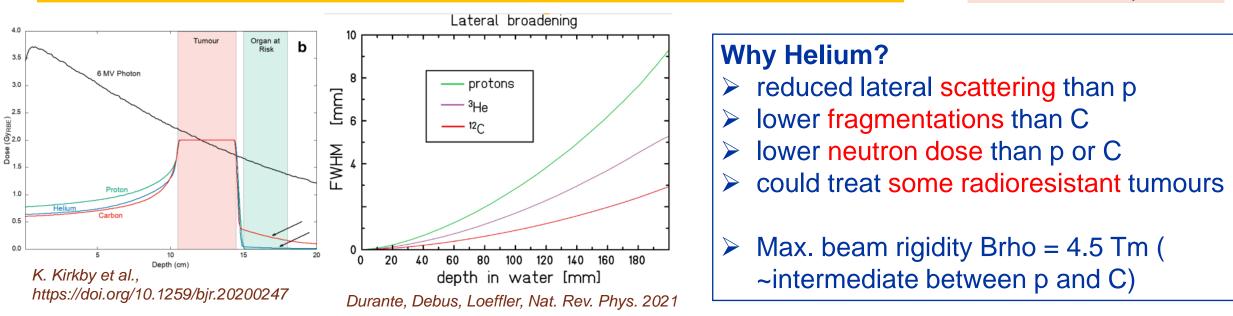

Several prototypes will be built in ~3y from now


Field Quality in strongly curved magnets (& modeling challenges) Study group HITRIplus E.Benedetto, D.Barna \rightarrow use generalized gradients Vs. multipoles

Veres, et al.

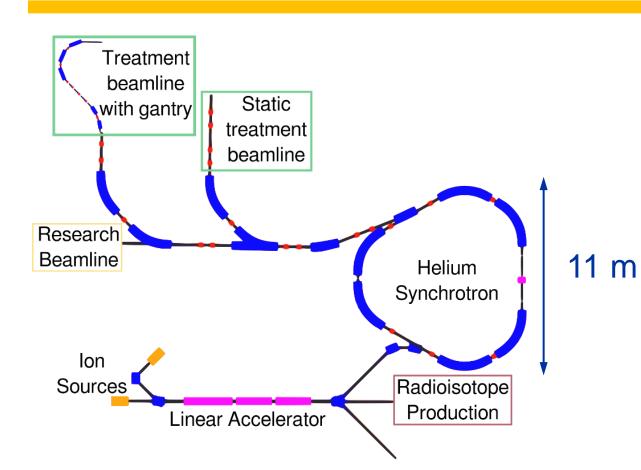

SC-magnet compact gantry for C-ions

- Gantries for Carbon ions are huge, two SC gantry in Japan, studies in Europe.
- Objective: Develop a superconducting gantry with weight lower than 100 tons and length below 16 metres.
- Subject: a «SIGRUM» type gantry selected by an expert committee in Dec. 2020.
- Development ongoing within HITRIplus


E.Benedetto et al, TERA, <u>https://arxiv.org/abs/2105.04205</u> *U. Amaldi, et. al, TERA* + *CERN, NIMMS-Note-002*

...Why a synchrotron for Helium

M. Vretenar et al., IPAC22

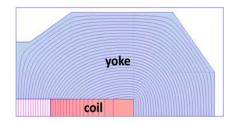


- > Treatment with helium is under advanced study at carbon therapy centres.
- First patient treated in September 2021 at the Heidelberg Ion Therapy.
- Clinical trials ongoing, will be soon licensed for treatment.
- An accelerator designed for Helium can also produce protons for treatment and for radiography, and be used for research with heavier ions (lower range).

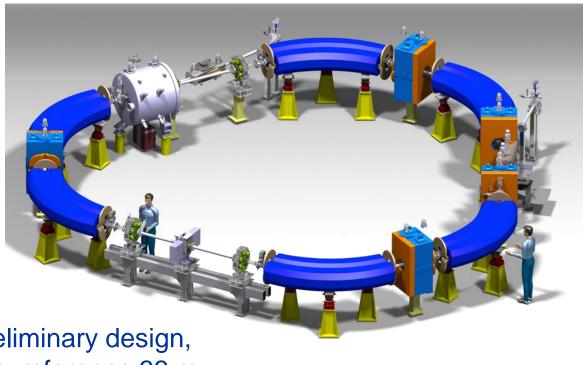
Helium facility

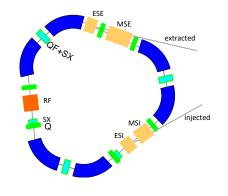
Considered for a recently proposed Advanced Particle Therapy Centre for the Baltic States.

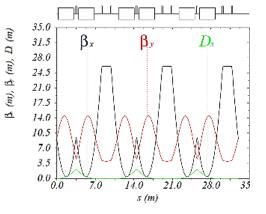
- Tanicle merapy in Europe. ENEIGITT, 2020
- \succ Two beamlines for treatment, one for research.
- Rotating superconducting gantry (HITRIplus /SIG collaborations).
- Linac for parallel radioisotope production (211At for targeted alpha therapy)
- Surface ~1,600 m2



The Helium synchrotron


Proven technology – warm magnets -, compact & upgradable


Three straight sections (injection, extraction, RF)


"Conservative" dipole field of 1.65 T (minor impact on ring size), with window-frame magnets.

Injector linac at 352.2 MHz, based on CERN Linac4 design.

Preliminary design, circumference 33 m

CERN experience in small synchrotrons (LEIR, ELENA)

Similarities with SC synchrotron for C- ions, e.g. in the straight sections

E. Benedetto, NIMMS - He synchrotron

Conclusions

At NIMMS we are designing

- Compact synchrotrons based on warm- and SC- magnet technology
- Flexible beam delivery, for conventional irradiation and FLASH

We are looking forward to working with you!

SEEIIST advanced design SEE

South East Europe International Institute for Sustainable Technologies, consortium of 10 countries, facility for cancer in South East Europe.

Science for peace

Scientific excellence

Education & Training

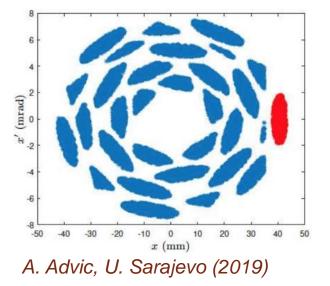
Strategic partner of NIMMS and part of HITB

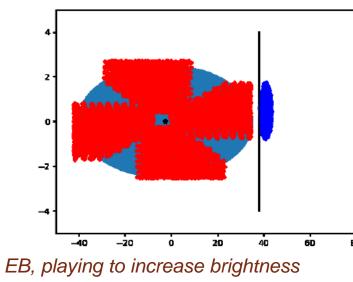
- Research and therapy with ions: p, He, C, O,... up to Ar
- Synchrotron baseline is PIMMS layout, option of a compact SC-magnet machine
- \succ Flexible extraction (multi-energy slow-ex and FLASH)
- \succ Intensity x20(*) EU facilities

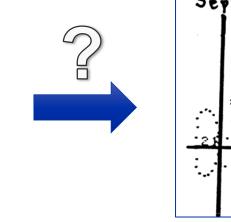
IFAST

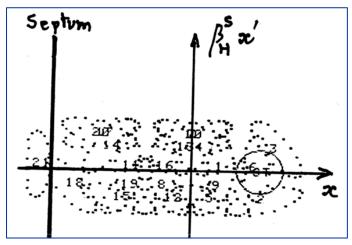
(*)To deliver 2 Gy Carbon ions to 1 liter in one cycle

		р	Не	С
	Intensity	2.6 e11	8.2 e10	2.0 e10
	Inj. Energy (MeV/u)	7-10	5	5
	Extr. Energy (MeV/u)	60-250	60-250	100-430
	Beam rigidity max (Tm)	2.42	4.85	6.62
	Ring diameter (m)		~25m	
i	Spill duration (s)		0.1 - 60	
	Ripple@1kHz (I _{max} /I _{ave})		<1.5	


Higher (x20) intensity: MT inj of 2e10 C-ions




Commercially available ECR source ~200 uA C+4


Next generation ECR (e.g. AISHA, Catania) ~600 uA C+4 (in 0.3 mm mrad rms)

Injecting @ 5 MeV/u in a 70 m circumference With 90% (high!) efficiency from source to injection \rightarrow 13 "effective turns" needed (x2 for the compact) Final emittance of ~5mm mrad (rms normalized)

LEIR injection (S.Maury, C.Carli, D. Mohl)

~similar #turns for He-ions (source 1mA)