Importance of Radiobiology to Hadron Therapy

Prof. Amato Giaccia Oxford Institute of Radiation Oncology University of Oxford Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK E-mail: amato.giaccia@oncology.ox.ac.uk

There is a strong rationale for the clinical benefit of proton and carbon therapies, but current evidence is limited

Therapy	Rationale for clinical benefit
Proton	 Deliver a higher, targeted radiation dose with decreased toxicity to surrounding tissue compared with photon therapy, especially near critical structures
Carbon	 Further increase target tissue damage with decreased secondary tissue affected compared with proton
	 Specific potential benefit with intractable radio-resistant tumors

Dosimetry Photons vs. Protons vs. Carbon

Carbon Ions Induce More Lethal Damage Per Unit Dose than Photons or Protons

Increased Biological Effectiveness:

Relative Biological Effectiveness is 3 times protons

- Reduces # fractionations by ~ 2: greater patient throughput/compliance
- Countermands radio-resistance: non-repairable, double-strand breaks

Production of positrons permits active monitoring using PET

Superior Dose Distribution and Biological Effectiveness of Carbon Ions Compared to Protons and Photons

Laser Driven Ion Accelerator for the UK

- Hadron Therapy while highly effective is expensive to build, run and service and requires greater technical experience
- High powered laser interaction with solid (foil) targets can generate significant magnetic and electric fields to accelerate ions
- State of the art currently is 2 digit MeVs at a high yield (10¹⁰-10¹²/pulse)
- Technology is still developing and needs work on energy bandwith, spatial profile uniformity, and repeat stability
- Major goal is to improve particle beam characteristics in a more reliable and streamlined manner that is more cost effective and efficient in a production type facility
- Ultimately, we want to develop a laser driven ion accelerator that can generate stable, well characterised and reliable beams that can be used for research and ultimately clinical purposes

Radiobiological Research Directions

- -Examining relative biological effectiveness (RBE) of different ion species-What is the Proton RBE- 1.1 or varying? -Advantages and disadvantages of different ways of beam delivery- FLASH, Minibeams, etc
- -Increased generation of tumour neoantigens for immune therapy
- -lon interaction with normal tissues-normal tissue tox -ldentifying genetic mutations where lon beam is most effective- Nrf2/Keap1, Cancer Stem Celss -Effect of Tumor Microenvironment on Ion Killing

Flash-Proton Radiotherapy Highly Effective in Controling Pancreatic Tumor Growth and Reduces Normal Tissue Toxicity

Koumenus et al. unplublished

Response to Proton Minibeam Irradiation

Br J Radiol. 2020 Mar; 93(1107)

Increasing Tumor Antigen/Neoantigen Formation after Heavy

IRRADIATED TUMOUR CELL

KEAP1/NRF2 Mutation Status Predicts Local Failure after Radiotherapy in Human NSCLC

		Wild-type (n = 33)	KEAP1/NRF2 mutant (n = 9)	P
Sex	M F	9 (27%) 24 (73%)	5 (56%) 4 (44%)	0.23
Median age, years (range)		70 (42-91)	66 (56-91)	0.45
Median follow-up, mo. (range)		24 (6-53)	25 (7-63)	0.47
Histology	SCC Adenoca Other	5 (15%) 25 (76%) 3 (9%)	1 (11%) 7 (78%) 1 (11%)	0.85
Stage	 	22 (67%) 6 (18%) 5 (15%)	5 (56%) 1 (11%) 3 (33%)	0.54
Median tumor volume, mL (range)		16.2 (0.8–569.8)	16.1 (1.0–218.5)	0.48
Radiation type	SABR CFRT	25 (76%) 8 (24%)	6 (67%) 3 (33%)	0.68
Chemotherapy	Yes No	7 (21%) 26 (79%)	3 (33%) 6 (67%)	0.66

	-
в.	-
_	_

Patient	Age	Sex	Stage	KEAP1 mutations		
				Tumor variant	ctDNA variant (%AF)	
T1	56	F	IIIB	M503I	M503I (3.38%)	
T2	56	F	IIIB	R483C	R483C (0.44%)	
T11	46	F	IIA	Wild-type	Wild-type	
T13	81	F	IB	Wild-type	Wild-type	
T14	78	М	IB	Wild-type	Wild-type	
T23	51	F	IIIA	Wild-type	Wild-type	
T35	48	F	IIIB	Wild-type	Wild-type	

Youngtae Jeong et al. Cancer Discov 2017;7:86-101

Carbon is More Effective In Killing Cancer Stem Cells

Survival of Cells Irradiated with Carbon Ions in Oxic (red curves) and Hypoxic conditions (blue curves) for Two Different LETs

Antonovic L et al. J Radiat Res 2013;54:18-26

Superior Dose Depth Distribution & Physical Beam Characteristics

-Higher LET -Superior RBE -Low OER -Narrow penumbra

Physics

Beam characterization
 Beam heterogeneity

Radiobiological Research

-Microenvironment

-CSCs

Engineering

-Gantry design -Miniaturization

Material Science

-Target Production -Substance lighter than concrete, but just as effective

Increasing the Patient Experience

-New Lhara Ion therapy-Less toxicity-Given in short period of time-Cost effectiveness research

Clinical Biology Research

-Dose limitations

-Toxicity

-Which tumor histologies benefit most
-Does it overcome tumor microenvironment
-Development of new clinical trial design

Clinical Physics Research

- -Dose and treatment planning
- -Development of IMCT

-Absorbed Dose Calculations -Modeling RBE

STFC/UKRI/ITRF

-Beam Production -Beam Delivery -Accelerator miniaturization -Active and Passive Beam Shaping

Multidisciplinary UK LhARA- Ion Therapy Program

Imaging

-Ionacoustic Imaging-Positron imaging-Dose distribution