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There is a strong rationale for the clinical
benefit of proton and carbon therapies, but
current evidence is limited

Therapy Rationale for clinical benefit

= Deliver a higher, targeted radiation dose
with decreased toxicity to surrounding
tissue compared with photon therapy,
especially near critical structures

= Further increase target tissue damage with
decreased secondary tissue affected
compared with proton

Carbon

= Specific potential benefit with intractable
radio-resistant tumors




Dosimetry
Photons vs. Protons vs. Carbon
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Carbon lons Induce More Lethal Damage Per Unit Dose
than Photons or Protons
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Increased Biological Effectiveness:

Relative Biological Effectiveness is 3 times protons
« Reduces # fractionations by ~ 2: greater patient throughput/compliance
« Countermands radio-resistance: non-repairable, double-strand breaks

Production of positrons permits active monitoring using PET



Superior Dose Distribution and Biological Effectiveness of
Carbon lons Compared to Protons and Photons
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Laser Driven lon Accelerator for the UK

* Hadron Therapy while highly effective is expensive to build, run and service
and requires greater technical experience

* High powered laser interaction with solid (foil) targets can generate
significant magnetic and electric fields to accelerate ions

o State of the art currently is 2 digit MeVs at a high yield (101°-10%?/pulse)

* Technology is still developing and needs work on energy bandwith, spatial
profile uniformity, and repeat stability

* Major goal is to improve particle beam characteristics in a more reliable and
streamlined manner that is more cost effective and efficient in a production
type facility

e Ultimately, we want to develop a laser driven ion accelerator that can
generate stable, well characterised and reliable beams that can be used for
research and ultimately clinical purposes



LhARA performance summary
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Laser-hybrid Accelerator for

12 MeV Protons | 15MeV Protons | 127 MeV Protons | 33.4 MeV/u Carbon
Dose per pulse 7.1Gy 12.8 Gy 15.6 Gy 73.0Gy
Instantaneous dose rate | 1.0 x 10 Gy/s | 1.8 x 10 Gy/s 3.8 x 10® Gy/s 9.7 x 10°® Gy/s
Average dose rate 71 Gyls 128 Gy/s 156 Gy/s 730 Gy/s

Radiobiological Applications




Radiobiological Research Directions

-Examining relative biological effectiveness (RBE) of
different ion species-What is the Proton RBE- 1.1 or varying?
-Advantages and disadvantages of different ways of beam

C

{

elivery- FLASH, Minibeams, etc

ncreased generation of tumour neoantigens for immune
nerapy

on interaction with normal tissues-normal tissue tox

dentifying genetic mutations where lon beam is most

effective- Nrf2/Keap1, Cancer Stem Celss
-Effect of Tumor Microenvironment on lon Killing




Flash-Proton Radiotherapy Highly Effective in Controling Pancreatic
Tumor Growth and Reduces Normal Tissue Toxicity
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066940/

Increasing Tumor Antigen/Neoantigen Formation after Heavy
lon Exposure
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KEAP1/NRF2 Mutation Status Predicts Local Failure after
Radiotherapy in Human NSCLC
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Carbon is More Effective In Killing
Cancer Stem Cells

In vitro clonogenic survival
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In vivo growth by beam type and dose
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Surviving fraction

Survival of Cells Irradiated with Carbon lons
in Oxic (red curves) and Hypoxic conditions (blue curves)
for Two Different LETs
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Radiobiological Research
-Development of radioprotectors
-Carbon ion interaction with diff tissues
-Metabolism
-Microenvironment

-CSCs

Superior Dose Depth Distribution
& Physical Beam Characteristics

-Higher LET
-Superior RBE
-Low OER

-Narrow penumbra

Physics
-Beam characterization

-Beam heterogeneity \

e

Engineering
-Gantry design
-Miniaturization

Material Science

-Target Production
-Substance lighter than
concrete, but just as

effective

Multidisciplinary

Increasing the
Patient Experience

-New Lhara lon therapy

-Less toxicity

-Given in short period of time
-Cost effectiveness research

Clinical Biology Research
/ -Dose limitations

-Toxicity

-Which tumor histologies benefit most
-Does it overcome tumor microenvironment
-Development of new clinical trial design

\‘\ Clinical Physics Research
-Dose and treatment planning

-Development of IMCT
-Absorbed Dose Calculations
-Modeling RBE

STFC/UKRI/ITRF

-Beam Production

-Beam Delivery

-Accelerator miniaturization
-Active and Passive Beam Shaping

LhARA- lon
Therapy
Program

Imaging
-lonacoustic Imaging
-Positron imaging
-Dose distribution



