LhARA: Baseline Design & Simulations

William Shields

(william.shields@rhul.ac.uk)

LhARA Collaboration Meeting

1. Stage 1 overview

- 2. Stage 1 performance evaluation with Monte Carlo simulations
- 3. Stage 2 injection line

4. Stage 2 FFA, extraction line, *in-vitro*, & *in-vivo* beam lines.

The LhARA Accelerator

Full pre-CDR Technical Note:

https://ccap.hep.ph.ic.ac.uk/trac/rawattachment/wiki/Communication/Notes/CCAP-TN-01.pdf Baseline Design Technical Note: <u>https://ccap.hep.ph.ic.ac.uk/trac/raw-</u> <u>attachment/wiki/Communication/Notes/CCAP-TN-11-LhARA-</u> <u>Design-Baseline.pdf</u>

W. Shields

Stage 1 Overview

- Beam up to 15 MeV protons & ions
- Vacuum nozzle before capture section for momentum cleaning
- 2 Gabor lenses in the capture section
- 3 further lenses for matching & energy selection
- RF cavities for longitudinal phase space manipulation
- Octupole & collimation for symmetric, uniform dose delivery
- Vertical matching arc & end station delivery
- Abort line

W. Shields

Beam to *in vitro* End Station

Vertical Matching Arc

Stage 1 Design Parameters

Small space-charge induced emittance growth

W. Shields

Particle Tracking

- MADX: Initial design

Low energy

S=0-5cm

- Hybrid Monte Carlo strategy:

contaminants between

modelled with

space charge

S=5-10 cm

Excellent tracking

tracking codes

agreement between

- BDSIM: Accelerator tracking + particle-matter interactions (Geant4)
- GPT: Particle tracking + space charge forces
- Gabor lenses modelled as equivalent strength solenoids
 - 0.014 0.012 0.010 GPT With Space Charge; σ_x ; N=1.0E+04 GPT With Space Charge; σ_y ; N=1.0E+04 σ_{x,y} / m 0.008 ADX; o ADX: o BDSIM; σ_x ; N=1.0E+04 0.006 BDSIM; σ_v ; N=1.0E+04 0.004 0.002 0.000 2 10 12 0 4 6 8 14 16 S/m

Adams Institute

General Particle Tracer (GPT)

Beam Phase Space

- Phase space aberration arises in Gabor lenses / solenoids
- Octupoles & collimation improves beam uniformity
- Reduction in transmission.

W. Shields

Energy Spread Control

- 3 collimators:
 - 1: Energy collimation
 - 2: Beam shaping
 - 3: Momentum cleaning

- Momentum cleaning required for removing energy distribution tails
- 2% energy spread achievable with only a modest transmission decrease

Work by T.S. Dascalu

Design Updates

- Modified Gabor lens strengths & alternative solenoid strengths
- Optimise beam transmission in conjunction with updated collimator settings.
- Comparable simulation performance with field maps replacing solenoids
- Wien filter for energy selection if solenoids are selected.

Element	Modified Parameter	Original Value	Re-optimised Value
Gabor Lens 1	Magnetic field	$B = 1.2868 [{\rm T}]$	$B = 1.4387 [{ m T}]$
Gabor Lens 2	Magnetic field	B = 0.6671 [T]	B = 0.5271 [T]
Gabor Lens 3	Magnetic field	$B = 0.8139 [{ m T}]$	(unchanged)
Gabor Lens 4	Magnetic field	$B=0.6852[{\rm T}]$	B = 0.7284 [T]
Gabor Lens 5	Magnetic field	$B=0.6542[{\rm T}]$	$B = 0.6338 [{ m T}]$
			Equivalent solenoid

field strength

Stage 2:Injection Line

Parameter	Value or ra	nge	Unit	
Injection line				
Number of bending magnets in the injection line	7			
Number of quadrupoles in the injection line	10			
Parameter	Value	Unit	-	
Beam energy	15	MeV	-	Beam into
Total relative energy spread	± 2	%		FFA ring
Nominal physical RMS emittance (both planes)	$4.1 imes 10^{-7}$	$\pi\mathrm{mrad}$		
Incoherent space charge tune shift	-0.8			Momentum
Bunching factor	0.023			Selection
Total bunch length	8.1	ns		
Bunch intensity	10^{9}			
Modified Gabor Lens streng Twiss Beta function optics r	gths for rec needed for	luced sta FFA inje	age 1 ction	Crossing through FFA straight section
	Capture	Matching	and Energy Selection	Beam Shaping and Switching Dipole
Beam from Laser-Target		-		

W. Shields

Beam simulated in GPT with & without space charge.

ROYAL HOLLOWAY

Good agreement between BDSIM and GPT without space charge.

- Emittance growth observed when modelling space charge forces.
 - Final dimensions do not match FFA cell requirements optimisation is required.
- Horizontal beam size jumps due to GPT output capturing the bunch partially within sector-bend fields

FFA Ring

Parameter	Value or range	Unit
FFA		
FFA: Machine type	single spiral scaling FFA	
FFA: Extraction energy	15–127	MeV
FFA: Number of cells	10	
FFA: Orbit R_{\min}	2.92	m
FFA: Orbit R _{max}	3.48	m
FFA: Orbit excursion	0.56	m
FFA: Number of RF cavities	2	
FFA: RF frequency	1.46–6.48	MHz
FFA: Max B field	1.4	Т
FFA: Ring tune (x,y)	(2.83,1.22)	
FFA: Number of kickers	2	
FFA: Number of septa	2	

- FixField simulations show good performance
 - Non-linearities, fringe fields
 - No space charge
- Simulate FFA design in OPAL for space charge modelling

- Factor 3 gain in momentum, up to 127 MeV in energy for protons, 33.4 MeV/u for C⁶⁺ ions.
- Trade-off between orbit excursion and straight section lengths to accommodate injection & extraction systems
- 2 cavities for operational stability

Stage 2 Extraction Line

Parameter	Value or range	Unit
Extraction line		
Number of bending magnets in the extraction line	2	
Number of quadrupoles in the extraction line	8	
Vertical arc bending angle	90	Degrees
Number of bending magnets in the vertical arc	2	
Number of quadrupoles in the vertical arc	6	
Number of cavities for longitudinal phase space manipulation	5	
Number of quadrupoles in the in vivo beam line	4	

- Flexibility to accommodate uncertainties in extracted FFA emittance
 - Up to a factor 10 larger
 - Space charge
- Optics flexibility to also offer wide range of beam conditions to serve end stations.
 - 1– 30 mm spot size

End **- Stations**

800

600

200

0

β_x, β_y [m]

Beam to

Stage 2 in-vitro Line

S / m

- Scaled version of the stage 1 low energy *in-vitro* beam line.
- To *in-vitro* end station
- Longer dipoles to remain in normal conducting magnet limits.
- Good transport performance across stage 2 energy range in BDSIM.
- Space charge impacts tracking for all extraction line optics configurations.

Beam from extraction line

W. Shields

15

Stage 2 in-vivo Line

ROYAL HOLLOWAY Adams Institute ccelerator Science 1000 800 β_x, β_y [m] 600 400 200 0 8 10 12 14 S [m] No Space Charge; σ_x ; N = 1.0E+04 Space Charge; σ_x ; N = 1.0E+04 0.012 No Space Charge; σ_{γ} ; N = 1.0E+04 Space Charge: σ_{ν} : N = 1.0E+04 0.010 0.008 m/ 6 0.006 0.004 0.002 0.000 5 ż 0 4 6 S/m Beam from extraction line

14th October 2022

- Beam delivered from unenergised *in-vitro* dipole
- Drift to clear *in-vitro* arc & accommodate RF systems & diagnostics
- Optics flexibility to deliver beams sizes of 1-30 mm
- Significant impact of space charge forces for nominal emittance beam

W. Shields

To in-vitro

end station

Deliverable Dose Estimation

- BDSIM energy deposition in end station target materials (H.T. Lau, IC).
- Monoenergetic idealised beams
 - Radiobiological effects from different Bragg curve regions
- Equivalent water phantom volume simulated at Bragg peak depths
 - 10 Hz repetition rate

		protons		
Kinetic energy	12 MeV	15 MeV	127 MeV	33.4 MeV/u
Bunch length	$7\mathrm{ns}$	$7\mathrm{ns}$	$41.5\mathrm{ns}$	$75.2\mathrm{ns}$
Dose per pulse	7.1 Gy	12.8 Gy	15.6 Gy	73.0 Gy
Instantaneous dose rate	$1.0 imes 10^9{ m Gy/s}$	$1.8 imes 10^9 \mathrm{Gy/s}$	$3.8 imes 10^8{ m Gy/s}$	$9.7 imes10^8{ m Gy/s}$
Average dose rate	71 Gy/s	128 Gy/s	156 Gy/s	730 Gy/s

- Successful stage 1 design capable of dose delivery into the FLASH regime.
- Working stage 2 design for FFA, & *in-vitro* and *in-vivo* beam lines
- Number of validated Monte Carlo models
 - Well supported workflow
 - Ideal for new stage of design studies

