Shallow and deep learning representations for quantifying spatial heterogeneity in tumours from DCE-MRI

Jola Mirecka

(jola.mirecka@stfc.ac.uk)

SciML / CCP-EM
RAL, STFC
&
IBME, University of Oxford

Shallow and deep learning representations for quantifying spatial heterogeneity in tumours from DCE-MRI

Jola Mirecka

(jola.mirecka@stfc.ac.uk)

SciML / CCP-EM
RAL, STFC
&
IBME, University of Oxford

Presentation outline

- 1. The problem
- 2. The question
- 3. Trial study:
 - 3.1. shallow image representations
- 4. Methods:
 - 4.1. shallow image representations
 - 4.2. deep image representations
- 5. Results:
 - 5.1. pre-clinical: tumour progression
 - 5.2. clinical: response to therapy
- 6. Cryo-EM?

1. The problem Tumours and heterogeneity

- cancerous tumours are characterized by an increase in heterogeneity
 - heterogeneity variation or non-uniformity in composition

1. The problem Dynamic Contrast-Enhanced MRI

capable monitoring and quantifying perfusion

Imaging Intratumor Heterogeneity: Role in Therapy Response, Resistance, and Clinical Outcome

James P.B. O'Connor^{1,2}, Chris J. Rose¹, John C. Waterton^{1,3}, Richard A.D. Carano⁴, Geoff J.M. Parker¹, and Alan Jackson¹

visual, qualitative or weakly quantitative assessment

2. The question

- Q1) Can we characterize tumour growth with the change in its perfusion heterogeneity?
- Q2) Can we translate such change into clinical application of therapy assessment and prediction?

3. Trial study: methods Shallow texture representations

- 1. allow for training from limited data shallow representations
- 2. capable of characterizing variation **texture**
- 3. some methods robust variation patch

3. Trial study: results Shallow texture representations

89% acc. with SVM

10

3. Trial study: results Shallow texture representations

4. Methods Shallow texture representations

- allow for training from limited data
- capable of characterizing variation

- I. Feature detection: dense
- **2. Feature descriptors:** Voxels, Gabor, Patch, LBP
- 3. Visual vocabulary: KMeans, GMM
- **4. Encoding:** BoV
- 5. Classifier: SVM

4. Methods: Gabor Shallow texture representations

$$\phi_{\theta,\sigma,\gamma,\lambda,\varphi}(x,y) = \exp\left(-\frac{x'^2 + (\gamma y')^2}{2\sigma^2}\right)\cos\left(2\pi\frac{x'}{\lambda} + \varphi\right)$$

$$\frac{x_0}{1 \ 0 \ 1} \longrightarrow \frac{x_0}{x_1} \qquad \phi_{\theta,\sigma,\gamma,\lambda,\varphi}(x,y,z) = \exp\left[-\frac{1}{2}\left(\frac{x'^2}{\sigma_x^2} + \frac{(\gamma y')^2}{\sigma_y^2} + \frac{(\gamma z')^2}{\sigma_z^2}\right)\right] \cos\left(2\pi \frac{x'}{\lambda} + \varphi\right)$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = R(\theta) \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad R(\theta) = R_x R_y R_z$$

$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_x & -\sin \theta_x \\ 0 & \sin \theta_x & \cos \theta_x \end{bmatrix} R_y = \begin{bmatrix} \cos \theta_y & 0 & \sin \theta_y \\ 0 & 1 & 0 \\ -\sin \theta_y & 0 & \cos \theta_y \end{bmatrix} R_z = \begin{bmatrix} 0 & \cos \theta_z & -\sin \theta_z \\ 0 & \sin \theta_z & \cos \theta_z \\ 0 & 0 & 1 \end{bmatrix}$$

4. Methods: Patch Shallow texture representations

4. Methods: LBP Shallow texture representations

$$s(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$\text{ELBP_CI}_p(x_c) = s(x_c - \beta)$$

$$ELBP_NI_p(x_c) = \sum_{i=1}^{n^3} s(x_i - \beta_p)2^i$$

4. Methods: feature descriptors Shallow texture representations

a) filter bank feature descriptor

4. Methods Deep texture representations

 $x\star\phi_{j-1}$ $x\star\phi_{j}$ $x\star\phi_{J}$ $x\star\phi_{J}$ $x\star\phi_{J}$

allow for training from limited data

capable of characterizing variation

4. Methods Deep texture representations

- 1. transfer learning: feature extractor
- **2.** hand-crafted nets: random projections

PCANet: A Simple Deep Learning Baseline for Image Classification?

Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma

Deep Filter Banks for Texture Recognition and Segmentation

4. Methods Deep texture representations

Rand-UNet

5. Results: segmentations Pre-clinical: tumour progression

5. Results: classifications Pre-clinical: tumour progression

	Vox	Filters	Patch	LBP	UNet	RandUNet
	Acc. DICE	Acc. DICE	Acc. DICE	Acc. DICE	Acc. DICE	Acc. DICE
$\mathbf{K}\mathbf{M}$	$65\% \mid 0.599$	$70\% \mid 0.604$	$70\% \mid 0.715$	$75\% \mid 0.723$	$80\% \mid 0.825$	$75\% \mid 0.729$
$\mathbf{G}\mathbf{M}\mathbf{M}$	82.5 % 0.516	70% 0.754	$70\% \mid 0.958$	$70\% \mid 0.963$	$77.5\% \mid 0.783$	$75\% \mid 0.715$

5. Results: segmentations Clinical: therapy response

5. Results: classifications

$$J_SAD = \sum_{j=1}^{6} \sum_{i=0}^{k} abs(h_{j,1}(i) - h_{j,2}(i))$$

Clinical: therapy response

Part 1: Results

Question 2: Clinical application - therapy assessment

Quantifying Spatial Perfusion Heterogeneity in Tumours from DCE-MRI

Jola Mirecka

(jolanta.mirecka@eng.ox.ac.uk)

- ★ Collaborators: Bartek Papiez, Benjamin Irving
- ★ Pre-clinical collaborators: Pavitra Kannan, Ana Gomes, Veerle Kesermans, Danny Allen, Paul Kinchesh, Sean Smart
- ★ Clinical collaborators: Ben George, Maria Hawkins
- ★ Supervisors: Mark Jenkinson, Julia Schnabel and Michael Chappell, Mike Brady (advisory)

Questions?

Cryo-EM?

- structure to function
- resolution revolution
- pharmaceutical implications

eBIC facilities

Illustration: @Martin Högbom/The Royal Swedish Academy of Sciences

Particle picking:

- noisy micrographs
- picking particles
- 2D classification

Model building:

- density segmentation
- secondary structure
- side chains

Model building:

- density segmentation
- secondary structure
- side chains

Ribosome: 100 000 atoms

Pipeline automation:

- automatic parameter selection
- data model

CCP-EM:

Tom Burnley Colin Palmer Agnel Joseph Martyn Winn

SciML: Tony Hey

Jeyan Thiyagalingam

Presentation outline

- 1. The problem
- 2. The question
- 3. Trial study:
 - 3.1. shallow image representations
- 4. Methods:
 - 4.1. shallow image representations
 - 4.2. deep image representations
- 5. Results:
 - 5.1. pre-clinical: tumour progression
 - 5.2. clinical: response to therapy
- 6. Cryo-EM?

1. The problem Tumours and heterogeneity

- cancerous tumours are characterized by an increase in heterogeneity
 - heterogeneity variation or non-uniformity in composition

1. The problem Dynamic Contrast-Enhanced MRI

capable monitoring and quantifying perfusion

Imaging Intratumor Heterogeneity: Role in Therapy Response, Resistance, and Clinical Outcome

James P.B. O'Connor^{1,2}, Chris J. Rose¹, John C. Waterton^{1,3}, Richard A.D. Carano⁴, Geoff J.M. Parker¹, and Alan Jackson¹

visual, qualitative or weakly quantitative assessment

2. The question

- Q1) Can we characterize tumour growth with the change in its perfusion heterogeneity?
- Q2) Can we translate such change into clinical application of therapy assessment and prediction?

3. Trial study: methods Shallow texture representations

- 1. allow for training from limited data shallow representations
- 2. capable of characterizing variation **texture**
- 3. some methods robust variation patch

3. Trial study: results Shallow texture representations

89% acc. with SVM

3. Trial study: results Shallow texture representations

4. Methods Shallow texture representations

- allow for training from limited data
- capable of characterizing variation

- I. Feature detection: dense
- **2. Feature descriptors:** Voxels, Gabor, Patch, LBP
- 3. Visual vocabulary: KMeans, GMM
- **4. Encoding:** BoV
- 5. Classifier: SVM

4. Methods: Gabor Shallow texture representations

a) filter bank feature descriptor

$$\phi_{\theta,\sigma,\gamma,\lambda,\varphi}(x,y) = \exp\left(-\frac{x'^2 + (\gamma y')^2}{2\sigma^2}\right)\cos\left(2\pi\frac{x'}{\lambda} + \varphi\right)$$

$$\frac{x_0}{1 \ 0 \ 1} \longrightarrow \frac{x_0}{x_1} \qquad \phi_{\theta,\sigma,\gamma,\lambda,\varphi}(x,y,z) = \exp\left[-\frac{1}{2}\left(\frac{x'^2}{\sigma_x^2} + \frac{(\gamma y')^2}{\sigma_y^2} + \frac{(\gamma z')^2}{\sigma_z^2}\right)\right] \cos\left(2\pi \frac{x'}{\lambda} + \varphi\right)$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = R(\theta) \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad R(\theta) = R_x R_y R_z$$

$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_x & -\sin \theta_x \\ 0 & \sin \theta_x & \cos \theta_x \end{bmatrix} R_y = \begin{bmatrix} \cos \theta_y & 0 & \sin \theta_y \\ 0 & 1 & 0 \\ -\sin \theta_y & 0 & \cos \theta_y \end{bmatrix} R_z = \begin{bmatrix} 0 & \cos \theta_z & -\sin \theta_z \\ 0 & \sin \theta_z & \cos \theta_z \\ 0 & 0 & 1 \end{bmatrix}$$

4. Methods: Patch Shallow texture representations

4. Methods: LBP Shallow texture representations

$$LBP(i,j,k) = \sum_{p=-n/2}^{n/2} \sum_{r=-n/2}^{n/2} \sum_{s=-n/2}^{n/2} s(I(i-p,j-r,k-s) - I(i,j,k)) 2^{prs}$$

$$s(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$\text{ELBP_CI}_p(x_c) = s(x_c - \beta)$$

$$ELBP_NI_p(x_c) = \sum_{i=1}^{n^3} s(x_i - \beta_p)2^i$$

4. Methods: feature descriptors Shallow texture representations

a) filter bank feature descriptor

4. Methods Deep texture representations

 $x\star\phi_{j-1}$ $x\star\phi_{j}$ $x\star\phi_{J}$ $x\star\phi_{J}$ $x\star\phi_{J}$ $x\star\psi_{j,k}$

allow for training from limited data

capable of characterizing variation

4. Methods Deep texture representations

- 1. transfer learning: feature extractor
- **2.** hand-crafted nets: random projections

PCANet: A Simple Deep Learning Baseline for Image Classification?

Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma

Deep Filter Banks for Texture Recognition and Segmentation

4. Methods Deep texture representations

Rand-UNet

5. Results: segmentations Pre-clinical: tumour progression

5. Results: classifications Pre-clinical: tumour progression

	Vox	Filters	Patch	LBP	UNet	RandUNet
	Acc. DICE	Acc. DICE	Acc. DICE	Acc. DICE	Acc. DICE	Acc. DICE
$\mathbf{K}\mathbf{M}$	$65\% \mid 0.599$	$70\% \mid 0.604$	$70\% \mid 0.715$	$75\% \mid 0.723$	$80\% \mid 0.825$	$75\% \mid 0.729$
$\mathbf{G}\mathbf{M}\mathbf{M}$	82.5 % 0.516	70% 0.754	$70\% \mid 0.958$	$70\% \mid 0.963$	$77.5\% \mid 0.783$	$75\% \mid 0.715$

5. Results: segmentations Clinical: therapy response

5. Results: classifications

 $J_SAD = \sum_{j=1}^{6} \sum_{i=0}^{k} abs(h_{j,1}(i) - h_{j,2}(i))$

Clinical: therapy response

Part 1: Results

Question 2: Clinical application - therapy assessment

Quantifying Spatial Perfusion Heterogeneity in Tumours from DCE-MRI

Jola Mirecka

(jolanta.mirecka@eng.ox.ac.uk)

- ★ Collaborators: Bartek Papiez, Benjamin Irving
- ★ Pre-clinical collaborators: Pavitra Kannan, Ana Gomes, Veerle Kesermans, Danny Allen, Paul Kinchesh, Sean Smart
- ★ Clinical collaborators: Ben George, Maria Hawkins
- ★ Supervisors: Mark Jenkinson, Julia Schnabel and Michael Chappell, Mike Brady (advisory)

Questions?

Cryo-EM?

- structure to function
- resolution revolution
- pharmaceutical implications

eBIC facilities

Illustration: @Martin Högbom/The Royal Swedish Academy of Sciences

Particle picking:

- noisy micrographs
- picking particles
- 2D classification

Model building:

- density segmentation
- secondary structure
- side chains

Model building:

- density segmentation
- secondary structure
- side chains

Ribosome: 100 000 atoms

Pipeline automation:

- automatic parameter selection
- data model

CCP-EM:

Tom Burnley Colin Palmer Agnel Joseph Martyn Winn

SciML: Tony Hey

Jeyan Thiyagalingam

