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1. The problem
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● cancerous tumours are characterized by an 
increase in heterogeneity

✶ heterogeneity - variation or 
non-uniformity in composition

Tumours and heterogeneity

normal vasculature tumour vasculature

CHANGE IN VARIATION
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1. The problem
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● capable monitoring and quantifying perfusion

Dynamic Contrast-Enhanced MRI
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1. The problem
Clinical standards
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● visual, qualitative or weakly quantitative assessment

Clinical standards
1. The problem
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2. The question
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Q1) Can we characterize tumour growth with the change in its perfusion heterogeneity?

Q2) Can we translate such change into clinical application of therapy assessment and prediction?

CHANGE IN VARIATION
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3. Trial study: methods
Shallow texture representations

1. allow for training from limited data - shallow representations
2. capable of characterizing variation - texture
3. some methods robust variation - patch
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3. Trial study: results

89% acc.
with SVM

Shallow texture representations
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3. Trial study: results
Shallow texture representations
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4. Methods
Shallow texture representations

1. Feature detection: dense
2. Feature descriptors: Voxels, Gabor, Patch, LBP
3. Visual vocabulary: KMeans, GMM
4. Encoding: BoV
5. Classifier: SVM

● allow for training from limited data 
● capable of characterizing variation
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4. Methods: Gabor
Shallow texture representations
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4. Methods: Patch
Shallow texture representations
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4. Methods: LBP
Shallow texture representations
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4. Methods: feature descriptors
Shallow texture representations
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4. Methods
Deep texture representations

● allow for training from limited data 
● capable of characterizing variation
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4. Methods
Deep texture representations

1. transfer learning: feature extractor
2. hand-crafted nets: random projections
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4. Methods
Deep texture representations

T-UNet

Rand-UNet
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5. Results: segmentations
Pre-clinical: tumour progression
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T-UNet+KM

Rand-UNet+KM

LBP+KM

Patch+KM

Gabor+KM

Vox+KM

confidence
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5. Results: classifications
Pre-clinical: tumour progression
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5. Results: segmentations
Clinical: therapy response

T-UNet Rand-UNetLBPPatchGaborVox confidencebaseline

09-05-2019 | Jola Mirecka: Shallow and deep representations for quantifying spatial heterogeneity in tumours.



24

5. Results: classifications
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NON-RESPONDERS RESPONDERS

Clinical: therapy response
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Part 1: Results
Question 2: Clinical application - therapy assessment
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Cryo-EM?
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● structure to function
● resolution revolution
● pharmaceutical

implications 

eBIC facilities



Cryo-EM?
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Particle picking:
● noisy micrographs
● picking particles
● 2D classification



Cryo-EM?
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Model building:
● density segmentation
● secondary structure
● side chains



Cryo-EM?
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Model building:
● density segmentation
● secondary structure
● side chains

Ribosome: 100 000 atoms



Cryo-EM?
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Pipeline automation:
● automatic parameter selection
● data model



Questions?
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● cancerous tumours are characterized by an 
increase in heterogeneity

✶ heterogeneity - variation or 
non-uniformity in composition

Tumours and heterogeneity

normal vasculature tumour vasculature

CHANGE IN VARIATION
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1. The problem
Clinical standards
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● visual, qualitative or weakly quantitative assessment

Clinical standards
1. The problem
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2. The question
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Q1) Can we characterize tumour growth with the change in its perfusion heterogeneity?

Q2) Can we translate such change into clinical application of therapy assessment and prediction?
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3. Trial study: methods
Shallow texture representations

1. allow for training from limited data - shallow representations
2. capable of characterizing variation - texture
3. some methods robust variation - patch
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3. Trial study: results

89% acc.
with SVM

Shallow texture representations
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3. Trial study: results
Shallow texture representations
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4. Methods
Shallow texture representations

1. Feature detection: dense
2. Feature descriptors: Voxels, Gabor, Patch, LBP
3. Visual vocabulary: KMeans, GMM
4. Encoding: BoV
5. Classifier: SVM

● allow for training from limited data 
● capable of characterizing variation
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4. Methods: Gabor
Shallow texture representations

09-05-2019 | Jola Mirecka: Shallow and deep representations for quantifying spatial heterogeneity in tumours.



44

4. Methods: Patch
Shallow texture representations
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4. Methods: LBP
Shallow texture representations
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4. Methods: feature descriptors
Shallow texture representations
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4. Methods
Deep texture representations

● allow for training from limited data 
● capable of characterizing variation
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4. Methods
Deep texture representations

1. transfer learning: feature extractor
2. hand-crafted nets: random projections
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4. Methods
Deep texture representations

T-UNet

Rand-UNet
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5. Results: segmentations
Pre-clinical: tumour progression
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T-UNet+KM
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5. Results: classifications
Pre-clinical: tumour progression
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5. Results: segmentations
Clinical: therapy response

T-UNet Rand-UNetLBPPatchGaborVox confidencebaseline
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5. Results: classifications
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NON-RESPONDERS RESPONDERS

Clinical: therapy response
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Part 1: Results
Question 2: Clinical application - therapy assessment
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Model building:
● density segmentation
● secondary structure
● side chains
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