SUMMARY OF TRANSVERSE BEAM DYNAMICS
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Recall - Hill’s Equation and Solutions
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Recall - One-turn map, lattice functions
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Recall - Dispersion, Momentum Compaction
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Recall - Tune, Resonances, Chromaticity
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Recall - Tune, Resonances, Chromaticity

+ q 2x
o P ~ —=(Byo +gx)(1 =90)(1+ —
e p( y )( )( p )
Tune and resonances e n

L
ol —~
Jf”.
B0RMD ==
027
29k O
S C ., ¥ 2k
| S o
27RO, 025Ky
—_— —_— 24k
V —_— — 5 G235k,
)
S AL oztky
2 b
5 TR

Natural chromaticity

Ve,y = Va,y(0) + &.y0

025
o]

Reducing chromaticity using sextupoles

= S(QJB + Dé)y[g = ngyg + SD5y
S S

IS o
Resonance Order

4>

The Cockeroft Institute
of Accelerator Science and Technology



LONGITUDINAL BEAM DYNAMICS
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Longitudinal dynamics

So far we have studied transverse motion (x,x’) (y,y’). Now we need to study the remaining motion
involving the coordinates in the longitudinal direction. This is called synchrotron motion.

One way of proceeding would be to define longitudinal lattice functions, by analogy to our studies of
transverse beam dynamics, but a different approach is usually taken.

The synchrotron tune is typically much less than the transverse tunes:

Vgy >> 1 >> v

As the motion is slow, we can ignore the s-dependent effects around the ring, and avoid a
longitudinal Courant-Snyder formalism.

In addition, we might expect to use z and z’ as the longitudinal coordinates. Instead of z’, we typically
use the momentum deviation & or the energy deviation.
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Longitudinal dynamics

So far we have studied transverse motion (x,x’) (y,y’). Now we need to study the remaining motion
involving the coordinates in the longitudinal direction. This is called synchrotron motion.

One way of proceeding would be to define longitudinal lattice functions, by analogy to our studies of
transverse beam dynamics, but a different approach is usually taken.

The synchrotron tune is typically much less than the transverse tunes:

> S1>> v,

As the motion is slow, we can |gnore the s-dependent ef'fects around the ring, and avoid a
|Ongltud|na| Courant- Snyder formahsm —_— o

In addition, we might expect to use z and z’ as the longitudinal coordinates. Instead of z’, we typically
use the momentum deviation & or the energy deviation.
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An RF cavity in aring

Let’s add an RF cavity to our storage ring.

This cavity is designed to generate a time-dependent longitudinal electric field to transfer energy
to the particle.

RF cavity
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An RF cavity in aring

Let’s add an RF cavity to our storage ring.

This cavity is designed to generate a time-dependent longitudinal electric field to transfer energy
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RF waveform and bunches arriving in a RF cavity

Accelerating’
voltage

Ll

Synchronous bunch = R

Time

Bunch arriving late

The RF voltage applied to the particle is sinusoidal in time
V(t) = Vysinwgpt

Choose the RF frequency to be an integer multiple of the revolution frequency. This is called
synchronism.

4>

The Cockeroft Institute
of Accelerator Science and Technology



Cavity synchronism

==

L agging

SEhrunuus

The particle at the centre of the bunch, called the synchronous
particle, acquires the right amount of energy such that it experiences
the same voltage difference on each turn.

Particles experience a voltage difference across the cavity of

V(t) = Vosin(wrrt + ¢o) = Vo sin ¢ (1)

In the case of no acceleration, a synchronous particle has ¢ =0, and
so it sees the zero of the sine function.

Particles arriving early see <

Particles arriving late see >

We’'ll assume that if 0 <¢<m the synchronous particle gains energy on
each turn of the machine.
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The principle of phase stability

For synchronism to work, the RF frequency must be an integer multiple of the revolution frequency

wrF = hwo

so the beam always sees the correct accelerating field.
h is the ‘harmonic number’.

But what if h is slightly non-integer, e.g. h=200.0000000001 ?
After many turns the beam will be out of phase with the RF system and will no longer be accelerated.

We need the motion to be stable even if there are small errors in the frequencies.
This is ‘phase stability’.

The concept of phase stability was developed by McMillan and Veksler in 1945.

i) Choose your RF frequency. This determines the energy of a synchronous particle.

ii) Particles with slight deviation in longitudinal coordinates will now oscillate (slowly) around this
(ideal) synchronous particle.
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The principle of phase stability (stable phase)

But we have a spread of energy (momenta) in the beam....
Let’s consider our ring, for which the synchronism condition is fulfilled for a phase qbs.

eV

ey ——f-——-—"""""""—"—"~—"-"x-"—"""“""“"¥“"¥“"“~"“—"=—"—"—"—"—¥—"—¥—~—————~# — -

eV, is the energy gain in one accelerating region for the particle to reach the next accelerating region
with the same RF phase. This fixes the phases P, ,P,, etc

First consider P,. Imagine a particle arrives a little later than the synchronous particle. So it sees a

slightly later phase of the RF, so sees M,. This means it gets a larger momentum kick, so has a higher
speed and gets around the ring faster. It arrives slightly earlier than it did, and hence moves towards
P

1°

Similarly, an early particle will see N,, get a smaller kick and move towards P,
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The principle of phase stability (stable phase)

But we have a spread of energy (momenta) in the beam....
Let’s consider our ring, for which the synchronism condition is fulfilled for a phase qbs.
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The principle of phase stability (stable phase)

But we have a spread of energy (momenta) in the beam....
Let’s consider our ring, for which the synchronism condition is fulfilled for a phase qbs.

eVl

eVs

eV, is the energy gain in one accelerating region for the particle to reach the next accelerating region
with the same RF phase. This fixes the phases P, ,P,, etc

First consider P,. Imagine a particle arrives a little later than the synchronous particle. So it sees a

slightly later phase of the RF, so sees M,. This means it gets a larger momentum kick, so has a higher
speed and gets around the ring faster. It arrives slightly earlier than it did, and hence moves towards
P

1°

Similarly, an early particle will see N,, get a smaller kick and move towards P,
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The principle of phase stability (unstable phase)

But we have a spread of energy (momenta) in the beam....
Let’s consider our ring, for which the synchronism condition is fulfilled for a phase qbs.

eV

ey ——f-——-—"""""""—"—"~—"-"x-"—"""“""“"¥“"¥“"“~"“—"=—"—"—"—"—¥—"—¥—~—————~# — -

eV, is the energy gain in one accelerating region for the particle to reach the next accelerating region
with the same RF phase. This fixes the phases P, ,P,, etc

Next consider P.. Imagine a particle arrives a little later than the synchronous particle. So it sees a
slightly later phase of the RF, so sees N,. This means it gets a smaller momentum kick, so has a lower
speed and gets around the ring slower. It arrives even later than it did, and hence moves away from
P

2¢

Similarly, an early particle will see M, get a larger kick and move away from P,
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The principle of phase stability (unstable phase)

But we have a spread of energy (momenta) in the beam....
Let’s consider our ring, for which the synchronism condition is fulfilled for a phase qbs.

eV

eVaF--A-———————-I\I - - S~

eV, is the energy gain in one accelerating region for the particle to reach the next accelerating region
with the same RF phase. This fixes the phases P, ,P,, etc

Next consider P.. Imagine a particle arrives a little later than the synchronous particle. So it sees a
slightly later phase of the RF, so sees N,. This means it gets a smaller momentum kick, so has a lower
speed and gets around the ring slower. It arrives even later than it did, and hence moves away from
P

2¢

Similarly, an early particle will see M, get a larger kick and move away from P,
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The principle of phase stability (unstable phase)

But we have a spread of energy (momenta) in the beam....
Let’s consider our ring, for which the synchronism condition is fulfilled for a phase qbs.

eV

eVaF--A-———————-I\I - - S~

eV, is the energy gain in one accelerating region for the particle to reach the next accelerating region
with the same RF phase. This fixes the phases P, ,P,, etc

Next consider P.. Imagine a particle arrives a little later than the synchronous particle. So it sees a
slightly later phase of the RF, so sees N,. This means it gets a smaller momentum kick, so has a lower
speed and gets around the ring slower. It arrives even later than it did, and hence moves away from
P

2¢

Similarly, an early particle will see M, get a larger kick and move away from P,
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The principle of phase stability

eVaA

A A e S e e i 7 -

So if an increase in energy is transferred into an increase in speed, M, & N, will more
towards P,(stable), while M, & N, will move away from P, (unstable).

This is the principle of phase stability.

This suggests that with the right choice of phase, particles will oscillate around
the synchronous phase, even though they have a natural spread of momenta.
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Relativistic considerations

eVl

P, P,

eVsF——f- """ x"""~"~"~"—"—"—"—"——————

N>

i) For a highly-relativisitic particle an increase
in energy translates to an increase in Lorentz
factor but only a small increase in speed.

ii) Particles with lower/higher momenta
move on an inner/outer dispersive orbit,
with a shorter/longer revolution time.

\

RF cavity

For highly-relativistic particles, higher energy means a longer revolution time, this
means P, becomes a stable point and P, becomes an unstable fixed point. Now M, & N,

will move away from P, (unstable), while M, & N, will go towards P, (stable).
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Relativistic considerations

eVl
M, M,
PRV I VA Py o _____F 3/
N/ '\ N,
v s
The change of ring behaviour when P_and P, RF cavity

swap between stable and unstable is called
transition.

For highly-relativistic particles, higher energy means a longer revolution time, this
means P, becomes a stable point and P, becomes an unstable fixed point. Now M, & N,

will move away from P, (unstable), while M, & N, will go towards P, (stable).
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Phase slip and transition energy

Particles with different momenta travel on different paths. The revolution period depends on
the circumference taken by a particle and its speed

r=2

v

The fractional revolution frequency for a slightly different circumference and velocity is

therefore given by
Af AT __AC Av

f TU C v
The particle arrival time is affected both by a longer path around the machine and also by the
particle moving faster. We can relate both these contributions to the fractional momentum

deviation,
Af 1\ Ap Ao _ 1 Ap
7 = | & — 5 = —no Vo 2 p
l P AC A
And define the phase slippage factor by 70 — OAC?
1 1 1
M= =57 327 2
S A ;
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Phase slip and transition energy

Particles with different momenta travel on different paths. The revolution period depends on
the circumference taken by a particle and its speed

C - Of(z,y) of(x,y)

The fractional revolution frequency for a slightly different circumference and velocity is

therefore given by
Af AT __AC Av

f TU C v
The particle arrival time is affected both by a longer path around the machine and also by the
particle moving faster. We can relate both these contributions to the fractional momentum

deviation,
Af 1\ Ap ao 1 Ap
7 = | & — 5 = —no vo  ?
i P AC Ap
And define the phase slippage factor by 70 — OAC?
1 1 1
N=C= 3= 27 2
S A ;
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Phase slip and transition energy

Particles with different momenta travel on different paths. The revolution period depends on
the circumference taken by a particle and its speed

r=2

v

The fractional revolution frequency for a slightly different circumference and velocity is

therefore given by
Af AT AC | Av

f TU C v
The particle arrival time is affected both by a longer path around the machine and also by the

particle moving faster. We can relate both these contributions to the fractional momentum
deviation,

— Y = = —n(‘i vo V2P
f AC  Ap
And define the phase slippage factor by 70 :»_a/,c?

1
vy :
/ &>
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Phase slip and transition energy

Particles with different momenta travel on different paths. The revolution period depends on
the circumference taken by a particle and its speed

r=2

v

The fractional revolution frequency for a slightly different circumference and velocity is

therefore given by
Af AT __AC Av

f TU C v
The particle arrival time is affected both by a longer path around the machine and also by the
particle moving faster. We can relate both these contributions to the fractional momentum

deviation,
Af 1\ Ap Av _ 1 A4p
—f = — |l — — —:Tné vo 2 p
i P AC A
And define the phase slippage factor by 70 = OAC?
111
O e :
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Transition energy

The quantity 7t is called the transition gamma and is related to the momentum compaction
factor of the lattice: 1

Below the transition energy we have

y<v n<0

and a higher momentum particle has a revolution period shorter than that of the synchronous
particle and so makes a single turn back to the cavity in a shorter time. This means our fixed
point P, is stable and P, is unstable.

Above the transition energy we have

Yy>v% n>0
And the opposite is true. Now higher momentum particles have a revolution period greater
than that of the synchronous particle. This means our fixed point P_is unstable and P, is stable.

At the transition energy the machine is isochronous for all momenta and all particle circulate
with the same period. l.e. 77 L 0
[ ]

(Some authors define the phase slippage eta the other way around!) ¢)
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Accelerating section, of an electron linac,
equipped with solenoids

(In a linac, only speed changes matter for longitudinal
stability as there are no dipoles and hence no
momentum compaction)

Accelerating section, of an electron linac,
equipped with quadrupoles
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A ‘real’ cavity on-axis field

CST V/m

Computer Simulation
4.37/e+08/7

Technology

3.87e+0807
R c+00 7

e =+ 0087
2. 15=3u]
I e+007
sle+88°7

EHE s e+006

Tyrpe = E-Field (peak)
Monitor = Mode 1

Plane at z =8

Frequency = 1.78858

Phase = B degrees

1.36889e+007 V/m at -41.8665 / 19.37 / -Z2.808202e-015

HMaximum-2d
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The phase space portrait

Given the parameters of the cavity, we can compute the motion in the longitudinal
phase space.

40 rf~b1{cket separatrices
72 \

Wiedemann p212

The separatrix starts from a point very close to (but not exactly at) the unstable fixed point, moves away and
forms an ‘alpha’ or fish shape around the stable fixed point. The area enclosed is the bucket and
corresponds to stable motion. R
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Stable and unstable fixed points (SFP, UFP)

Our “fixed points” are

\P:\Ifo \If:’]T—\Ifo

If the synchronous phase P, in the diagram below is stable, P, is a SFP. Hence P, is an UFP. This is
above transition.

If the synchronous phase P, in the diagram below is stable, P, is a SFP. Hence P, is an UFP. This is
below transition.

eV A

eVs
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The phase space portrait - above and below transition

| i

Sex (ﬂﬁlh]/ ey) e

Each fish-shaped curve
corresponds to a different
value of the synchronous
phase (RF settings).

(Ignore the odd units of
the energy axis....

It's expressed in terms of a
normalised momenta
deviation).
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Buckets and bunches - LHC example

The particles
RE Voltage oscillate back and
forth in
time/energy

- N -’ N s N -’ S
// \\ // \\ // \\ // \\
/ N /7 \ /7 N /7 N
P FEreet S S 5 P > e
N e RN 7 AN 7 Mo e
N - Ne---» 7 S o // S e PRe
S~-~-7 25ns ~-=- ~= -=-
LHC harmonic number is 35,640
RF frequency is 400 MHz °
wrr = hwg Every 10" bucket is filled 4>
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Longitudinal dynamics (variables)

The RF acceleration process relates the energy gained by a particle to
the RF phase experienced by the same particle. Since there is a well-
defined synchronous particle which always experiences the same rf
phase ﬁ\o, and gains the nominal energy E, it is sufficient to follow

other particles with respect to that particle. Possible choice of
“reduced variables” are

revolution frequency : Af =f -f_
particle RF phase : Ay =y -y,
azimuth angle : AO=0-6,
particle momentum : Ap=p-p,
particle energy : AE=E-E,
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Longitudinal dynamics (variables)

The RF acceleration process relates the energy gained by a particle to
the RF phase experienced by the same particle. Since there is a well-
defined synchronous particle which always experiences the same rf
phase ﬁ\o, and gains the nominal energy E, it is sufficient to follow

other particles with respect to that particle. Possible choice of
“reduced variables” are

revolutlon  frequency: Af = f - f
parhcle RF phase : AL|J L|J L|J
azimuth angle ~ : "AO=0- 9
particle momentum : Ap p p
~ particle energy o NAE=E-E
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Longitudinal motion

The periodic longitudinal motion around the nominal phase is known as synchrotron motion.

Let’s study this motion in a more quantitative way by looking at energy balance for one
complete turn of the machine.

The nominal quantities are denoted by ‘0’ subscripts, U is the peak voltage and W denotes the
energy loss per revolution of the particle.

The nominal particle energy balance is

EO — 6U0 sin \Ifo = WO

An arbitrary particle which has a slight momentum deviation and a slight phase deviation from
the nominal particle has energy balance

E = eUysin(Vy + AV) — W
We write the energy loss per turn for the arbitrary particle as a linear function in the energy

deviation
dW
= " AE
W =Wy + %
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Longitudinal motion (smooth approximation)

If we take the difference between the one-turn energy balance of the nominal and
arbitrary particle, we get an expression for the energy difference between the two

AE = E — Ey = elUp [sin(¥y + AT) — sin U] — W AR

db

One synchrotron oscillation lasts many turns of the machine. So to get the rate of
change of the energy deviation we can simply divide by the revolution time T,

AE === = 2 [sin(Vy + AT) — sin U] —
TO TO Sl ( 0T+ ) S111 0] JE TO

This gives a differential equation for the energy deviation in the smooth
approximation.

Now we want a differential equation for the phase difference.
[ ]
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Getting an equation for the phase difference

We already have a useful starting expression a few slides ago, when we derived
AT 1\ Ap
_—  — a RS R S— e

To “ v) p

in our discussion of the transition gamma.
As the accelerating RF frequency has period Tge

AT
AV =27—— = wRFAT
IRF

Recall the RF frequency should be an integer multiple of the revolution frequency. The
harmonic number g (or h) is

__ WRF
q_—

wrev

Therefore the more general expression for the phase deviation is given by

AT 1\ A
AV = qurev AT = 2mq—— = 27q | o — — P
1o < v/ p

WRF The Cockeroft Institute
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Phase differential equation

Let’s swap momentum deviation for energy deviation (convention) using

Ap 1 AE

o 2
p B E
giving an expression for the phase deviation

2 1\ AFE
AT =9 (o -

B v?) E
‘Differentiating’ this with respect to time as before gives us
. AW 2 1\ AFE
AV = . 0 o —
Ty BTy v?) E

Together with the first order equation for the energy deviation

AEF = — = — [sin(W¥ AT) — sin Ual —
T, T sin(Wq + ) — sin Wy iE T,

We can either solve the equations numerically, or combine them to make a second .
order ODE. ¢)

The Cockeroft Institute
of Accelerator Science and Technology



Phase differential equation

Let’s swap momentum deviation for energy deviation (convention) using
Ap 1 AFE
o 2
p p
giving an expression for the phase deviation

27q 1\ AE
AU = 52 o — 2 )

‘Differentiating’ this with respect to time as before gives us

o AU 2mg I\ AE
C A\I! - _

Together with the first order equatlon for the energy deV|at|on

. AE el . dWAE
AE_—:— in(W, + AU — sin ¥
T, — T, sin(Wo + AW) —sin Wo| - dE Tp

We can either solve the equations numerically, or combine them to make a second .
order ODE. ¢)
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Longitudinal motion

Let’s make a second order ODE for small momentum deviations i.e.

AV < ¥

Expanding the sine function using standard identities we get

sin(Wg + AW) — sin Wy = sin Wy cos AV + cos ¥ sin AV — sin ¥,

Which is approximately
sin(Wg + A¥) ~ AU cos ¥,

and so our energy equation becomes

ely dW AE
AE = AW Yy —
T, T 4E T,
which we can differentiate to get
. el dW AE
AE =S OA\IICOS\IIO —

T dE Ty &>
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Longitudinal motion

Let’s make a second order ODE for small momentum deviations i.e.

AV K Y
Expanding the sine function using standard identities we get
sin(Wo + AW) — sin ¥y = sin ¥y cos AV + cos ¥y sin AV — sin ¥y,
Which is approximately

sin(Wg + A¥) ~ AU cos ¥,

and so our energy equation becomes

ely dW AE
AE = AW Yy —
T, T 4E T,
which we can differentiate to get
. el dW AE
AE =S OA\IICOS\IIO —

T dE Ty &>
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Longitudinal motion

. ely . - AW AE
AE = COAT cos T, —
T, =" T T UE T, |
. AT 2 1\ AE
ni AT I ( 1)AE
1Y 62T, v¢) E

We can eliminate the phase differential to obtain

AE + 2a,AE + Q?AE =0

The Cockeroft Institute
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Longitudinal motion

AE = —"2A¥cos ¥, —
S e LT Ty

AU 27g AE
- (0 w) T

To BT

o= el aW AE

,,,/’/‘
We can eliminate the phase differential to obtain
\\AEL + 2a;AE 4+ Q°AE =0

4>
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Longitudinal motion

We can eliminate the phase differential to obtain
AE + 2a,AE + Q*AE =0
Here we have defined a damping term as

1 dw
- 2Ty dE

Ug

and the ‘frequency’ of the motion as

0 elUpg cos Vg 1
= WrevA /| — )
2732 E % 2

This differential equation is the same form as the one for a damped harmonic oscillator, and
means our motion in longitudinal phase space is (at least for small values of the energy
deviation) oscillatory around the nominal energy provided the damping term is not too large.

We can use our knowledge of differential equations to find the solutions to this equation...

4>
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Longitudinal motion

We adopt a trial solution for the energy deviation, where the constant (v may in general be
complex

AE(t) = AEyexp?
This gives the characteristic equation for w,
2 2
w4+ 2asw + 2 =0
Which can be solved to get
w:—a,S:: \/ag—QZ

If we assume light damping, then the second term is purely imaginary and we obtain an
oscillatory solution for the energy deviation

AE(t) = AEyexp™ %t exp™*

()  Frequency

Damping constant H
dg ping d>
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Above and below transition

Recalling the expression for the frequency,

elUpq cos YV, 1
0= trevy |~ 2 )
2nB°E ¥
Stable solutions require this to be a real number, and so we require that
1
a.— —5 | cos Yy <0
8

There are two solutions for this stable phase, namely the ones we derived previously when we
talked about the transition energy. This solution below transition is

T T 1
S <Uyg< = ad q,< —
2 2 7
And above transition is
T 37 1
— < Uy < — and > ~2

2 2 g .
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longitudinal phase analysis - summary

Choose required energy gain per turn. Knowing the RF voltage we obtain the synchronous
phase. There are two possible phase solutions between 0 and 2n.

Here we assume we want acceleration, so U,>0

We now check the phase slippage factor. I.e. how does the frequency of revolution change
for a small change dp/p? Positive means above transition, meaning the synchronous phase
lies between n/2 and n. Negative means below transition, meaning the synchronous phase
lies between 0 and /2.

The curve in phase space which divides the stable and unstable regions of flow is called
the separatrix. The stable region surrounds the stable fixed point. The separatrix can be
found by an Hamiltonian analysis of the system (beyond this course).

The region inside the separatrix, where stable motion exists, is called the bucket.
Expressions exist (beyond this course) for the width (in phase), height (in energy) and the
area (maximum longitudinal emittance) of this bucket.

Motion is stable near the stable fixed point and unstable near the unstable fixed point. So
particles cluster around the SFP and stay away from the UFP. Hence we observe the fact
that beams in a synchrotron when RF is applied are necessarily bunched.
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longitudinal phase analysis - the need for compression

Bunches of particles accelerated in this way have a spread of momenta
imprinted by the change of rf phase with time.

This can lead to a spread in the bunch length.

Some (many) applications require very short bunches.

N
,‘_
\

v

Therefore in some machines a “bunch compressor” is necessary.
This often takes the form of a chicane or an arc.
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SYNCHROTRON RADIATION AND DAMPING
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Emission of synchrotron radiation

P.Density

X-ray
beam line

All accelerating charges radiate
electromagnetic radiation.

Linear
accelerator

tron gun

Undulater

Magnets
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It can be intense...
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And can interact with material...

(1] ||
TR

ig. 12, Damaged X-rav ring front end gate valve. The power incident on the valve was approximately 1 kW for a duration @
estimated to 2-10 min and drilled a hole through the valve plate. )
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Retarded potentials

The radiation field is given in terms of the potentials by

, OA
EF=__—_

Ot Ve
B=VXA

Where the potentials are the retarded potentials (see EM course).

The calculations of E and B lead to a doughnut-shaped pattern of radiation power in
the rest frame of the particle.

This means the pattern is also doughnut-shaped in the non-relativistic case in the
lab, and becomes two back-to-back cones in the lab after the appropriate Lorentz
transformation in the relativistic case.
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Emission of synchrotron radiation from a dipole bend

The radiation is emitted into a cone with an opening angle of 1/y, where
V is the relativistic Lorentz factor.

(We shall assume the radiation is emitted in the direction of motioni.e. v
is close to ¢)

electroy,
(S [ow)

electroy

electron ( relodivis i)

orbif
Rodiohon [ield

V<<CI V=C
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The spectrum of bending radiation

A fixed observer sees a very short EM pulse of photons as the circulating electron
bunch passes them turn after turn.

This gives a broad photon frequency spectrum characterised by the “critical
energy”, which divides the spectrum into two regions of equal power.

We won't be deriving the expression here, but for reference, the number of
photons emitted as a function of frequency / energy is given by

N (3)/ Ks,3(y)dy
We w/w,.
Ec - 36’}13

where K is a modified Bessel function and the We — ?
critical frequency is given by 2p
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The spectrum of bending radiation

A fixed observer sees a very short EM pulse of photons as the circulating electron
bunch passes them turn after turn.

This gives a broad photon frequency spectrum characterised by the “critical
energy”, which divides the spectrum into two regions of equal power.

A

) (I | Ceriticar energy
S giiiin =ik The plot shows the spectrum
Ny e T HHH for an electron beam of energy
o LU L N | 5 GeV passing through a dipole

1t e 1 e AL of bend radius 12.2 m but the
i T ?k | shape is universal.

= - — E _ 1 — 3

- 1\ o Ec B 3¢y

10" . c o

10’ 10° 10° 10° 10° h 210

E, [eV] o
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Larmor’s formula

To calculate the SR power in colliders, we'll jump from the retarded
potentials to the relativistic version of Larmor’s formula, giving the power
emitted by a charged particle

p_ e 1 |(dF\" 1 (dBY’ s
° 6meg (moc2)? | \dr ¢ \ dr sl L

This tells us that power is emitted as SR if the momentum changes or the
total energy changes.

We'll deal with two limiting cases:

Linear dﬁ 5 Circular d_p J—ﬁ
acceleration d_’T H p acceleration dr
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The linear case

For the case in linear acceleration (linacs), the spatial energy gradient is
often known, and a short calculation gives a formula for the power
radiated from linearly-accelerating particles:

P _ ec 1 dE\
6w (mocc)z \ dz

Even a high field gradient such as dE/dx=35 MeV / m gives P_ around 10" W (for
electrons).

For ultra-relativistic particles we can generally neglect this effect.
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The circular case

Assume the motion is circular and the total energy stays the same.
Larmor’s formula becomes

/

P_egc | @2 1 (d 2P_62072 1 dp2
° 6meg (moc?)? | \dT c? \ dr " 6meg (moc?)? \ dt
This can be written in terms of the energy of the particle E (for a relativistic

particle) and the bending radius of the motion R

e’c 1 E*
671'6() (m062)4 R2
This formula was found by Lienard. Note it depends on the fourth power

of the particle energy and the second power of the radius.
Comparing electrons to protons

B =

2 4
Pse _ [ TpC — 1.13 x 1013 i-e-SRmuch more important in
electron machines >

B MeC2
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The circular case

Assume the motion is circular and the total energy stays the same.
Larmor’s formula becomes

po e 1 [(dB\'_1(dEN*| , _ e 1 (dp)’
° 6mep (moc?)? dr c2 \ dr g 67eq (mgc2)2 tit\
This can be written in terms of the energy of the particle E (for a relativistic
particle) and the bending radius of the motion R
P e’c 1 E* |d&p
5 671'6() (m062)4 R2 dt
This formula was found by Lienard. Note it depends on the fourth power

of the particle energy and the second power of the radius.
Comparing electrons to protons

2 4
Pse _ [ TpC — 1.13 x 1013 i-e-SRmuch more important in
electron machines >

B MeC2
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The circular case

Assume the motion is circular and the total energy stays the same.
Larmor’s formula becomes

e (@)2 l(dE)2P_eny 1 (dp\’
° 6meg (moc2)? | \dr cc \ dr 6meg (moc?)? \ dt
This can be written in terms of the energy of the particle E (for a relativistic
particle) and the bending radius of the motion R

e’c 1 E*
671'60 (m[}(32)4 R2
This formula was found by Lienard. Note it depends on the fourth power

of the particle energy and the second power of the radius.
Comparing electrons to protons

B =

2 4
Pse _ [ TpC — 1.13 x 1013 i-e-SRmuch more important in
electron machines >

B MeC2
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The circular case

Assume the motion is circular and the total energy stays the same.
Larmor’s formula becomes

e (@)2 l(dE)2P_eny 1 (dp\’
° 6meg (moc2)? | \dr cc \ dr 6meg (moc?)? \ dt
This can be written in terms of the energy of the particle E (for a relativistic
particle) and the bending radius of the motion R

This formula was found by Lienard. Note it depends on the fourth power
of the particle energy and the second power of the radius.
Comparing electrons to protons

2 4
Pse _ [ TpC — 1.13 x 1013 i-e-SRmuch more important in
electron machines >
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The circular case

Assume the motion is circular and the total energy stays the same.
Larmor’s formula becomes

P_EQC | @2_l@2p_62(:§% 1 d‘p2
° 6meg (moc?)? | \dT € \ a7 * 6meg (moc?)? \ dt

This can be written in terms of the energy of the particle E (for a relativistic
particle) and the bending radius of the motion R

This formula was found by Lienard. Note it depends on the fourth power
of the particle energy and the second power of the radius.
Comparing electrons to protons

2 4
Pse _ [ TpC — 1.13 x 1013 i-e-SRmuch more important in
electron machines >

B MeC2
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The circular case

We'd like to know the energy loss per turn i.e. for one complete
revolution. We assume constant R (i.e. a circular machine) and P_

IR
%:%gﬁ:gi—
C

We obtain a useful expression for the energy loss per turn of a circular machine

e’ E4 ~ dmmyg c?y4
360(?7?,0(32)4 R N 3R

Choosing values for an electron (or positron) we arrive at

Up =

(E[GeV])4

Uy = 0.0855[MeV] =
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The circular case

We'd like to know the energy loss per turn i.e. for one complete
revolution. We assume constant R (i.e. a circular machine) and P_

Uy = f P.dt = P! Orbit period.
We obtain a useful expression for the energy loss per turn of a circular machine
[ — e’ E4 ~ dmmyg c?y4
0 360(?7?,0(32)4 R N 3R

Choosing values for an electron (or positron) we arrive at

(E[GeV])4

Uy = 0.0855[MeV] =
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The circular case

We define the useful constant

A ro 1 o2 r,=classical electron radius

Cy =

3 (mgc?)3 B geo(m,ocz)‘l

giving the compact formula for the energy radiated per revolution

E4
9 R
Rewriting the radius R using the beam rigidity
1 eB 1 ecB

Ug

E_p R_B_E

we end up with our final expressions for the energy lost per turn,

€C
Up =c,— E°B
and the power radiated: 262
ce“c
P; =c, E’B?

27 32
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The circular case

We define the useful constant

A ro 1 o2 r,=classical electron radius

Cy =

3 (mgc?)3 ~ 3 €o(moc?)?

giving the compact formula for the energy radiated per revolution
E4

Rewriting the radius R using the beam rigidity

1 eB 1 ecbB

Ug

R D R_B_E

we end up with our final expressions for the energy lost per turn, Uyc
€eC
UO = ¢, _E3B 2T R
and the power radiated: B
ce?c?

2 ; I ﬁ The Cockeroft Institute
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Energy losses

Table 2.1 A few important circular electron accelerators. L is the circumference of
the machine, F the maximum beam energy, /i the bending radius, B the field in the
bending magnets and AE the energy loss per revolution.

accelerator L ml FE [GeV] R m| B [T| AE [keV]
BESSY I (Berlin) 62.4 0.80  1.78  1.50 20.3
DELTA (Dortmund) 115 150  3.34 150 134.1
DORIS II (Hamburg) 288 5.00 12.2 1.37 4.53 x 10?
ESRF (Grenoble) 844 6.00 234 0855 4.90 x 10°
PETRA (Hamburg) 2304 23.50 195 040 1.38 x 10°
LEP (Geneva) 27 x 103 70.00 | 3000 0.0TS@ Wille

At around 100 GeV the SR losses get so large that it becomes too
expensive to replace them with the RF systems (e.g. LEP).

We need to use either heavier particles (protons, muons, ...) or a larger
bending radius.
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Energy losses - e.g. the proposed FCC-ee at CERN

Z WW ZH tt
Circumference (km) 97.756
Bending radius (km) 10.760
Free length to IP [* (m) 2.2
Solenoid field at TP (T) 2.0
Full crossing angle at IP € 30
(mrad)
SR power /beam (MW) 50
Beam energy (GeV) 45.6 80 120 175 182.5
Beam current (mA) 1390 147 29 6.4 5.4
Eur. Phys. J. Special Topics 228, 261-623 (2019)
[ ]
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Energy losses - e.g. the proposed FCC-ee at CERN

Z WW ZH tt
Circumference (km) 97.756
Bending radius (km) 10.760
Free length to IP [* (m) 2.2
Solenoid field at TP (T) 2.0
Full crossing angle at IP € 30
(mrad)
SR power /beam (MW) 50
Beam energy (GeV) 45.6 80 120 175 182.5
Beam current (mA) 1390 147 29 6.4 5.4
Eur. Phys. J. Special Topics 228, 261-623 (2019)
[ ]
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Away from the design orbit

ce“c
27 32

Note that we’ve implicitly assumed that we’re considering a particle on a circular
reference orbit moving in an isomagnetic ring.

E?B?

Ps = ¢y

What if a particle is not on the reference orbit?

If the particle is not on the reference orbit but does have the reference energy, E,
then the effect of the betratron oscillations on the synchrotron radiation emission
will average out, as long as the fields vary linearly with displacement from the
design orbit.

What if a particle does not have the reference energy / momentum?

That will affect the amount of synchrotron radiation emitted, and that’s what we'’ll
consider next.
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Effect of radiation on beam

So far all our analysis of beams has assumed motion in dipoles, quadrupoles and
sextupoles without any effects of radiation.

We now know a charged particle moving in an electromagnetic field (e.g. a
dipole magnet or an rf cavity), will radiate.

What does this mean for the particle motion?

The radiation can produce damping effects in all planes, and lead to concepts
such as equilibrium emittance, growing energy spread and beam polarization.
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Radiation damping for longitudinal motion (rough calculation)

Synchrotron radiation gives a natural mechanism to damp the synchrotron
oscillations of a particle:

* Let E, be the synchronous particle energy.

* Imagine some particle has moreenergyby AEF AF < F,
* Then this particle will radiate more, moving its energy close to

The radiation power is

So

662 62

T on 32
Hence we can show that for a period of orbit T,

change of AE per turn = —|P,(AE) — P,(0)|T}
P, (0)AE Us

T, = —2-2AE
E, 0 E,

P, (AE) =c (Es + AE)*B?

~—2

Showing that the rate of energy loss varies linearly with AE and hence

exponential damping will occur. .
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Transverse damping

So the synchrotron radiation provides a natural damping mechanism to the
energy of a particle scaling as U /E..

There is also a natural damping in the transverse plane too. The radiation
takes energy from all three spatial directions, so p_and P, reduce.

Momentum is regained longitudinally in the RF cavity.
This means the ratios p./p, and py/pZ drop, and so the slopes x’ and y’ reduce.

Hence radiation damps the beam motion in all three planes.

The full calculation of how fast the emittance drops is too long for this course,
but let’s look at the general procedure and some of the results.
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Result of a more detailed calculation vertically

To get the correct answer for how the emittance reduces with time due to
damping, we need to be a little more careful in our calculation. Let’s look at
the answer for all three planes separately.

Vertically, it turns out the rough estimate we derived for longitudinal damping
is quite accurate, and the vertical emittance damps according to

t
€,(t) =€,(0)exp | —2—
Ty
With the damping time given by
E
T, =2—T,
This is valid for v=c, such that E=pc. UO
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Result of a more detailed calculation longitudinally

We have to do a bit more work to get the correct effects for longitudinal
damping but the results are given here.

We introduce the longitudinal emittance:

€2 =< 22 >< 6% > — < 26 >?
Then

Tz

t
.(t) = ex(O)exp -2 )
where we define the longitudinal damping time

2 B,

and introduce j which is an example of a ‘damping partition number’.
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Damping partition numbers and radiation integrals

The full analysis to calculate jZ starts by considering the radiated energy per turn

dt 1 i 1 DAFE
{-"r'r'uri' — fjj"}df = fjj"‘r'_dﬁ — - f -P-*, (1 + I) ds = —f—i-}-‘\ (1 + — _,) ds
ds c P C ' p Eo

Recall this?

Longitudinal motion

We can eliminate the phase differential to obtain

AE + 2a,AE + Q?AE =0

Here we have defined a damping term as 1 dW AE(t) — AE() eXp—a,St eXpifﬁl

T 2T, dE

g

We've identified our energy loss W with radiation emission U .Soto find the damping time we

need to calculate

d Ura,d
dE
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Damping partition numbers and radiation integrals

The full analysis to calculate jZ starts by considering the radiated energy per turn

a

e \\
dt 1 i 1 D AEN
'f.-'rr-ul-j' — f .I.-}d-: d'lt - f .I.-}d-: _E..jllq _- — f j-.-l-l (J. —I_ £) 'riH — — f .i-}ﬂ-\.h (1 +‘: - _1 :‘ f.jqu
ds C f C ' ;\:' Ey )

Now we need to calculate

dUra,d
dFE
We won't carry out all of the steps here, but using P,:r. ~ E?RB2

dB / D&E\\

we can calculate xr = —
dE \\\ -El' [] /'/“

i N P

//

dby _ 25 n QPT/ D dB
dE- Ey By {39 dz

which helps us see where some of the terms come from in the answer (on the next slide).

evaluated at E=E,
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Damping partition numbers and radiation integrals

For the longitudinal case the full analysis finds

2 Eyo dP, 2P, _P, DdB
— 7 = 19
jz UU dE Ey By Eq dx

. 14
,]Z — 2 —I_ I_
2
The discussion of damping partition numbers is beyond this course, but there is one for each
plane. It is a function of the lattice (not the beam).

This result is phrased in terms of “radiation integrals”, where we need numbers 2 and 4

ds D, (1
IQ — 5 _[4 — 9
p p\p
Each is an integral over the lattice. H
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Damping partition numbers and radiation integrals

For the longitudinal case the full analysis finds

- =2 kb, P, 2P, P, DB

: /) 1 4
Jz = 2 ‘"|" -
\ // _[2

The discussion of damping partition numbers is beyond this course, but there is one for each
plane. It is a function of the lattice (not the beam).

This result is phrased in terms of “radiation integrals”, where we need numbers 2 and 4

ds D, (1
IQ — —2 _[4 — 9
p P \P
Each is an integral over the lattice. H
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Damping partition numbers and radiation integrals

For the longitudinal case the full analysis finds

2 Eyo dP, 2P, _P, DdB
— 7 = 19
jz U‘D dE E(] Bn E[] dx

. 14
,]Z — 2 —I_ I_
2
The discussion of damping partition numbers is beyond this course, but there is one for each
plane. It is a function of the lattice (not the beam).

This result is phrased in terms of “radiation integrals”, where we need numbers 2 and 4

ds -
P P \p
Each is an integral over the lattice. .
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Radiation damping for transverse

The horizontal emittance is a very involved calculation due to dispersion, coupling
and other factors.

The complete calculation shows the horizontal emittance also decays
exponentially,

de., 2

= ——€,

dt T

Where we define the damping constant,

I .
2 &>
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Quantum excitation

So, we have damping times in all three planes of order E./U,,.

According to this picture, a beam of particles in a storage ring would damp
down to zero size in a few thousand turns. Which cannot be true!

Lots of things happen to stop this (e,g intra-beam scattering, beam-beam
effects) but often the first physics to limit the shrinking beam is the
synchrotron radiation itself.

The discrete quantum nature of photon emission acts as a noise source on the
beam through little kicks causing the energy oscillation to grow, providing a
growth on the emittance.

The result is that some kind of equlibrium, where beam sizes (length, height,
energy spread, etc) all tend to some non-zero values.

See later courses for more details!
[ ]
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