Science \& Technology
Facilities Council

Special Relativity

 Chris Prior

Trinity College Oxford

Overview

- The principle of special relativity
- Lorentz transformation and consequences
- Space-time
- 4-vectors: position, velocity, momentum, invariants, covariance.
- Derivation of $E=m c^{2}$
- Examples of the use of 4 -vectors
- Inter-relation between β and γ, momentum and energy
- An accelerator problem in relativity
- Photons and wave 4-vector
- Relativistic particle dynamics
- Lagrangian and Hamiltonian Formulation
- Radiation from an Accelerating Charge
- Motion faster than speed of light

Reading

- W. Rindler: Introduction to Special Relativity (OUP 1991)
- D.F. Lawden: An Introduction to Tensor Calculus and Relativity (Dover, 2003)
- N.M.J. Woodhouse: Special Relativity (Springer 2002)
- A.P. French: Special Relativity, MIT Introductory Physics Series (Nelson Thomes)
- C.Misner, K.Thorne and J.Wheeler: Relativity (Freeman, 1973)
- C.R. Prior: Special Relativity, CERN Accelerator School (Zeegse)

Historical Background

- Groundwork of Special Relativity laid by Lorentz in studies of electrodynamics, with crucial concepts contributed by Einstein to place the theory on a consistent footing.
- Maxwell's equations (1863) attempted to explain electromagnetism and optics through wave theory
- light propagates with speed $\boldsymbol{c}=\mathbf{3 \times 1 0 ^ { 8 }} \mathbf{~ m} / \mathrm{s}$ in "ether" but with different speeds in other frames
- the ether exists solely for the transport of e/m waves
- Maxwell's equations not invariant under Galilean transformations
- To avoid setting e/m apart from classical mechanics, assume
- light has speed c only in frames where source is at rest
- the ether has a small interaction with matter and is carried along with astronomical objects such as the Earth

Contradicted by Experiment

- Aberration of star light (small shift in apparent positions of distant stars)
- Fizeau's 1859 experiments on velocity of light in liquids
- Michelson-Morley 1907 experiment to detect motion of the earth through ether
- Suggestion: perhaps material objects contract in the direction of their motion

$$
L(v)=L_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}
$$

This was the last gasp of ether advocates and the germ of Special Relativity led by Lorentz, Minkowski and Einstein.

The Principle of Special Relativity

- A frame in which particles under no forces move with constant velocity is inertial.
- Consider relations between inertial frames where measuring apparatus (rulers, clocks) can be transferred from one to another: related frames.
- Assume:
- Behaviour of apparatus transferred from F to F^{\prime} is independent of mode of transfer
- Apparatus transferred from F to F^{\prime}, then from F^{\prime} to $F^{\prime \prime}$, agrees with apparatus transferred directly from F to $\mathrm{F}^{\prime \prime}$.
- The Principle of Special Relativity states that all physical laws take equivalent forms in related inertial frames, so that we cannot distinguish between the frames.

Simultaneity

- Two clocks A and B are synchronised if light rays emitted at the same time from A and B meet at the mid-point of $A B$

- Frame F' moving with respect to F. Events simultaneous in F cannot be simultaneous in F^{\prime}.
- Simultaneity is not absolute but frame dependent.

Science \& Technology
Facilities Council

The Lorentz Transformati

- Must be linear to agree with standard Galilean transformation in low velocity limit
- Preserves wave fronts of pulses of light,

$$
\text { i.e. } \quad P=x^{2}+y^{2}+z^{2}-c^{2} t^{2} \quad=0
$$

whenever $\quad Q=x^{\prime 2}+y^{\prime 2}+z^{\prime 2}-c^{2} t^{\prime 2}=0$

- Solution is the Lorentz transformation from frame $F(t, x, y, z)$ to frame $F^{\prime}\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$ moving with velocity \mathbf{v}
 along the x-axis:

$$
\begin{aligned}
t^{\prime} & =\gamma\left(t-\frac{v x}{c^{2}}\right) \\
x^{\prime} & =\gamma(x-v t) \\
y^{\prime} & =y \\
z^{\prime} & =z
\end{aligned}
$$

$$
\text { where } \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Science \& Technology Facilities Council

Outline of Derivation

$$
\text { Set } \begin{aligned}
t^{\prime} & =\alpha t+\beta x & & \\
x^{\prime} & =\gamma x+\delta t & & \text { where } \alpha, \beta, \gamma, \delta, \epsilon, \zeta \\
y^{\prime} & =\epsilon y & & \text { are constants } \\
z^{\prime} & =\zeta z & &
\end{aligned}
$$

$$
\begin{aligned}
k P & =Q \\
\Longleftrightarrow k\left(c^{2} t^{2}-x^{2}-y^{2}-z^{2}\right) & =c^{2} t^{\prime 2}-{x^{\prime}}^{2}-y^{\prime 2}-z^{\prime 2} \\
& =c^{2}(\alpha t+\beta x)^{2}-(\gamma x+\delta t)^{2}-\epsilon^{2} y^{2}-\zeta^{2} z^{2}
\end{aligned}
$$

Equate coefficients of x, y, z, t
Impose isotropy of space $\Longrightarrow k=k(\vec{v})=k(|\vec{v}|)= \pm 1$
Apply some common sense (e.g. $\epsilon, \zeta, k=+1$ and not -1)

General 3D form of Lorentz Transformation:

$$
\begin{aligned}
\vec{x}^{\prime} & =\vec{x}-\vec{v}\left(\gamma t-(\gamma-1) \frac{\vec{v} \cdot \vec{x}}{v^{2}}\right) \\
t^{\prime} & =\gamma\left(t-\frac{\vec{v} \cdot \vec{x}}{c^{2}}\right)
\end{aligned}
$$

Consequences: length contraction

A $\operatorname{rod} A B$ of length L^{\prime}, fixed in frame F^{\prime} at $x_{A}^{\prime}, x_{B}^{\prime}$. What is its length measured in F ?
Must measure position of ends in F at same time, so events in F are $\left(c t, x_{A}\right)$ and $\left.c t, x_{B}\right)$.
By Lorentz:

$$
\left.\begin{array}{rl}
x_{A}^{\prime} & =\gamma\left(x_{A}-v t\right) \\
x_{B}^{\prime} & =\gamma\left(x_{B}-v t\right)
\end{array}\right\} \Longrightarrow \begin{aligned}
L^{\prime} & =x_{B}^{\prime}-x_{A}^{\prime} \\
& =\gamma\left(x_{B}-x_{A}\right) \\
& =\gamma L>L
\end{aligned}
$$

Moving objects appear contracted in the direction of the motion

Consequences: time dilation

- Clock in frame F at point with coordinates (x, y, z) at different times t_{A} and t_{B}
- In frame F^{\prime} moving with speed v, Lorentz transformation gives

$$
t_{A}^{\prime}=\gamma\left(t_{A}-\frac{v x}{c^{2}}\right) \quad t_{B}^{\prime}=\gamma\left(t_{B}-\frac{v x}{c^{2}}\right)
$$

- So

$$
\Delta t^{\prime}=t_{B}^{\prime}-t_{A}^{\prime}=\gamma\left(t_{B}-t_{A}\right)=\gamma \Delta t>\Delta t
$$

Moving clocks appear to run slow

Schematic Representation

Frame F^{\prime}

Length contraction $L<L^{\prime}$
Rod at rest in F^{\prime}. Measurements in F at a fixed time t, along a line parallel to x-axis

Frame F^{\prime}

Time dilation $\Delta t<\Delta t^{\prime}$
Clock at rest in F. Time difference in F^{\prime} from line parallel to t^{\prime}-axis

Science \& Technology Facilities Council

Example: High Speed Train

All clocks synchronised.
A's clock and driver's clock read 0 as front of train emerges from tunnel.

- Observers A and B at exit and entrance of tunnel say the train is moving, has contracted and has length

$$
\frac{100}{\gamma}=100 \times\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}=100 \times\left(1-\frac{3}{4}\right)^{1 / 2}=50 \mathrm{~m}
$$

- But the tunnel is moving relative to the driver and guard on the train and they say the train is 100 m in length but the tunnel has contracted to 50 m

Question 1

A's clock and the driver's clock read zero as the driver exits tunnel. What does B's clock read when the guard goes in?

Moving train length 50m, so driver has still 50m to travel before he exits and his clock reads 0 . A's clock and B's clock are synchronised. Hence the reading on B's clock is

$$
-\frac{50}{v}=-\frac{100}{\sqrt{3} c} \approx-200 \mathrm{~ns}
$$

Question 2

What does the guard's clock read as he goes in?

To the guard, tunnel is only 50 m long, so driver is 50 m past the exit as guard goes in. Hence clock reading is

$$
+\frac{50}{v}=+\frac{100}{\sqrt{3} c} \approx+200 \mathrm{~ns}
$$

Question 3

Where is the guard when his clock reads 0 ?

Guard's clock reads 0 when driver's clock reads 0 , which is as driver exits the tunnel. To guard and driver, tunnel is 50 m , so guard is 50 m from the entrance in the train's frame, or 100 m in tunnel frame.
So the guard is 100 m from the entrance to the tunnel when his clock reads 0 .

Question 1

A's clock and the driver's clock read zero as the driver exits tunnel. What does B's clock read when the guard goes in?

$F(t, x)$ is frame of A and $B, F^{\prime}\left(t^{\prime}, x^{\prime}\right)$ is frame of driver and guard.

We know $x_{A}=0, x_{B}=100, x_{D}^{\prime}=0, x_{G}^{\prime}=100$. We want t_{B} when G and B coincide.

$$
\begin{gathered}
x=\gamma\left(x^{\prime}-v t^{\prime}\right) \quad t=\gamma\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}}\right) \\
x^{\prime}=\gamma(x+v t) \quad t^{\prime}=\gamma\left(t+\frac{v x}{c^{2}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& 100=\gamma\left(100+v t_{B}\right) \\
& \Longrightarrow t_{B}=100 \frac{1-\gamma}{\gamma v}=-\frac{50}{v}
\end{aligned}
$$

Question 2

$F(t, x)$ is frame of A and $B, F^{\prime}\left(t^{\prime}, x^{\prime}\right)$ is frame of driver and guard.

We know $x_{A}=0, x_{B}=100, x_{D}^{\prime}=0, x_{G}^{\prime}=100$. We want t_{G}^{\prime} when B and G coincide.

$$
\begin{aligned}
& x=\gamma\left(x^{\prime}-v t^{\prime}\right) \quad t=\gamma\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}}\right) \\
& x^{\prime}=\gamma(x+v t) \quad t^{\prime}=\gamma\left(t+\frac{v x}{c^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 100=\gamma\left(100-v t_{G}^{\prime}\right) \\
& \Longrightarrow t_{G}=100 \frac{\gamma-1}{\gamma v}=+\frac{50}{v}
\end{aligned}
$$

Question 3

Where is the guard when his
 clock reads 0 ?

$F(t, x)$ is frame of A and $B, F^{\prime}\left(t^{\prime}, x^{\prime}\right)$ is frame of driver and guard.

$$
\text { We know } x_{A}=0, x_{B}=100, x_{D}^{\prime}=0, x_{G}^{\prime}=100
$$

We want x corresponding to $x_{G}^{\prime}=100$ given $t_{G}^{\prime}=0$.

$$
\begin{aligned}
& x=\gamma\left(x^{\prime}-v t^{\prime}\right) \quad t=\gamma\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}}\right) \\
& x^{\prime}=\gamma(x+v t) \quad t^{\prime}=\gamma\left(t+\frac{v x}{c^{2}}\right)
\end{aligned}
$$

$$
x=\gamma(100-v \times 0)=200 \mathrm{~m}
$$

Or 100 m from the entrance to the tunnel

Question 4

Where was the driver
when his clock reads the same as the guard's when he enters the tunnel?

$F(t, x)$ is frame of A and $B, F^{\prime}\left(t^{\prime}, x^{\prime}\right)$ is frame of driver and guard.
We know $x_{A}=0, x_{B}=100, x_{D}^{\prime}=0, x_{G}^{\prime}=100$. We want x_{D} when $t_{D}^{\prime}=\frac{50}{v}$.

$$
\begin{aligned}
& x=\gamma\left(x^{\prime}-v t^{\prime}\right) \quad t=\gamma\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}}\right) \\
& x^{\prime}=\gamma(x+v t) \quad t^{\prime}=\gamma\left(t+\frac{v x}{c^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
x & =\gamma\left(x_{D}^{\prime}-v t_{D}^{\prime}\right) \\
& =-50 \gamma=-100 \mathrm{~m}
\end{aligned}
$$

The driver is already out of the tunnel by 100m

Example: Cosmic Rays

- Muons are created in the upper atmosphere, 90 km from earth. Their half life is $\tau=2 \mu \mathrm{~s}$, so they can travel at most $2 \times 10^{-6} c=600 \mathrm{~m}$ before decaying. So how do more than 50% reach the earth's surface?

Muons see distance contracted by γ, so

$$
v \tau \approx \frac{90}{\gamma} k m
$$

Earthlings say muons' clocks run slow so their halflife is $\gamma \tau$ and

$$
v(\gamma \tau) \approx 90 \mathrm{~km}
$$

- Both give

$$
\frac{\gamma v}{c}=\frac{90 k m}{c \tau}=150, \quad v \approx c, \quad \gamma \approx 150
$$

Space-time

- An invariant is a quantity that has the same value in all inertial frames.
- Lorentz transformation is based on invariance of

$$
c^{2} t^{2}-\left(x^{2}+y^{2}+z^{2}\right)=(c t)^{2}-\vec{x}^{2}
$$

- 4D-space with coordinates (t, x, y, z) is called space-time and the point $(t, x, y, z)=(t, \boldsymbol{x})$ is called an event.
- Fundamental invariant (preservation of speed of light):

$$
\begin{aligned}
\Delta s^{2}=c^{2} \Delta t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2} & =c^{2} \Delta t^{2}\left(1-\frac{\Delta x^{2}+\Delta y^{2}+\Delta z^{2}}{c^{2} \Delta t^{2}}\right) \\
& =c^{2} \Delta t^{2}\left(1-\frac{v^{2}}{c^{2}}\right)=c^{2}\left(\frac{\Delta t}{\gamma}\right)^{2}
\end{aligned}
$$

$\int \mathrm{d} t$ is called proper time, the time in the instantaneous rest-frame $\tau=\int \frac{\mathrm{d} t}{\gamma}$ and an invariant. $\Delta \mathrm{s}$ is called the separation between two events.

4-Vectors

The Lorentz transformation can be written in matrix form as

$$
\begin{gathered}
\begin{aligned}
& t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) \\
& x^{\prime}=\gamma(x-v t) \\
& y^{\prime}=y \\
& z^{\prime}==\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=
\end{aligned} \\
\left.X^{\prime}=L X \quad \begin{array}{cccc}
\gamma & -\frac{\gamma v}{c} & 0 & 0 \\
-\frac{\gamma v}{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right) \\
\text { Lorentz matrix } L
\end{gathered}
$$

Position 4-vector X
An object made up of 4 elements which transforms like X is called a 4-vector (analogous to the 3-vector of classical mechanics)

4-Vector Invariants

Basic invariant:
$c^{2} t^{2}-x^{2}-y^{2}-z^{2}=(c t, x, y, z)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)\left(\begin{array}{c}c t \\ x \\ y \\ z\end{array}\right)=X^{t} g X=X \cdot X$
Inner product of two four vectors $A=\left(a_{0}, \vec{a}\right), B=\left(b_{0}, \vec{b}\right)$:

$$
A \cdot B=A^{T} g B=a_{0} b_{0}-a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}=a_{0} b_{0}-\vec{a} \cdot \vec{b}
$$

Invariance:

$$
A^{\prime} \cdot B^{\prime}=(L A)^{T} g(L B)=A^{T}\left(L^{T} g L\right) B=A^{T} g B=A \cdot B
$$

In particular $A \cdot A=a_{0}^{2}-\vec{a}^{2}$.

4-Vectors in S.R. Mechanics

- Velocity:

$$
V=\frac{\mathrm{d} X}{\mathrm{~d} \tau}=\gamma \frac{\mathrm{d} X}{\mathrm{~d} t}=\gamma \frac{\mathrm{d}}{\mathrm{~d} t}(c t, \vec{x})=\gamma(c, \vec{v})
$$

- Note invariant: $\quad V \cdot V=\gamma^{2}\left(c^{2}-\vec{v}^{2}\right)=\frac{c^{2}-\vec{v}^{2}}{1-\vec{v}^{2} / c^{2}}=c^{2}$
- Momentum:

$$
P=m_{0} V=m_{0} \gamma(c, \vec{v})=(m c, \vec{p})
$$

$$
\begin{aligned}
& m=m_{0} \gamma \quad \text { is the relativistic mass } \\
& p=m_{0} \gamma \vec{v}=m \vec{v} \quad \text { is the relativistic } 3 \text {-momentum }
\end{aligned}
$$

4-Force

From Newton's $2^{\text {nd }}$ Law expect 4-Force given by

$$
\begin{aligned}
F & =\frac{\mathrm{d} P}{\mathrm{~d} \tau}=\gamma \frac{\mathrm{d} P}{\mathrm{~d} t} \\
& =\gamma \frac{\mathrm{d}}{\mathrm{~d} t}(m c, \vec{p})=\gamma\left(c \frac{\mathrm{~d} m}{\mathrm{~d} t}, \frac{\mathrm{~d} \vec{p}}{\mathrm{~d} t}\right) \\
& =\gamma\left(c \frac{\mathrm{~d} m}{\mathrm{~d} t}, \vec{f}\right)
\end{aligned}
$$

Note: 3-force equation: $\quad \vec{f}=\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}=m_{0} \frac{\mathrm{~d}}{\mathrm{~d} t}(\gamma \vec{v})$

Einstein's Relation: Energy and Mass

- Momentum invariant $\quad P \cdot P=m_{0}^{2} V \cdot V=m_{0}^{2} c^{2}$
- Differentiate

$$
\begin{aligned}
P \cdot \frac{\mathrm{~d} P}{\mathrm{~d} \tau}=0 & \Longrightarrow V \cdot \frac{\mathrm{~d} P}{\mathrm{~d} \tau}=0 \Longrightarrow V \cdot F=0 \\
& \Longrightarrow \gamma(c, \vec{v}) \cdot \gamma\left(c \frac{\mathrm{~d} m}{\mathrm{~d} t}, \vec{f}\right)=0 \\
& \Longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t}\left(m c^{2}\right)-\vec{v} \cdot \vec{f}=0
\end{aligned}
$$

$\vec{v} \cdot \vec{f}=$ rate at which force does work
$=$ rate of change of kinetic energy

Therefore kinetic energy is
$T=m c^{2}+$ constant $=m_{0} c^{2}(\gamma-1)$

$E=m c^{2}$ is total energy

Summary of 4-Vectors

Position

$$
X=(c t, \vec{x})
$$

Velocity

$$
V=\gamma(c, \vec{v})
$$

Momentum

$$
\begin{aligned}
P & =m_{0} V=m(c, \vec{v})=\left(\frac{E}{c}, \vec{p}\right) \\
F & =\gamma\left(c \frac{\mathrm{~d} m}{\mathrm{~d} t}, \vec{f}\right)=\gamma\left(\frac{1}{c} \frac{\mathrm{~d} E}{\mathrm{~d} t}, \vec{f}\right)
\end{aligned}
$$

Example: Addition of Velocities

An object has velocity $\vec{u}=\left(u_{x}, u_{y}\right)$ in frame F^{\prime}, which moves with velocity $\vec{v}=(v, 0)$ with respect to frame F.

The 4-velocity $U=\gamma_{u}\left(c, u_{x}, u_{y}\right)$ has to be Lorentz transformed to F, resulting in a 4 -velocity $W=\gamma_{w}\left(c, w_{x}, w_{y}\right)$:

$$
\left(\begin{array}{c}
c \gamma_{w} \\
\gamma_{w} w_{x} \\
\gamma_{w} w_{y}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & \gamma v / c & 0 \\
\gamma v / c & \gamma & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c \gamma_{u} \\
\gamma_{u} u_{x} \\
\gamma_{u} u_{y}
\end{array}\right)
$$

$$
\begin{aligned}
\gamma_{w} & =\gamma \gamma_{u}\left(1+\frac{v u_{x}}{c^{2}}\right) \\
\gamma_{w} w_{x} & =\gamma \gamma_{u}\left(v+u_{x}\right) \\
\gamma_{w} w_{y} & =\gamma_{u} u_{y}
\end{aligned}
$$

$$
\begin{aligned}
& w_{x}=\frac{v+u_{x}}{\left(1+\frac{v u_{x}}{c^{2}}\right)} \\
& w_{y}=\frac{u_{y}}{\gamma\left(1+\frac{v u_{x}}{c^{2}}\right)}
\end{aligned}
$$

Using Invariants

A neater way of finding the speed of the particle as measured in frame F :
An observer in F has 4 -velocity V and the object has 4 -velocity U

$$
U \cdot V \text { is invariant }
$$

Evaluated in frame $F^{\prime}: \quad U=\gamma_{u}\left(c, u_{x}, u_{y}\right), \quad V=\gamma(c,-v, 0)$

$$
\Longrightarrow U \cdot V=\gamma \gamma_{u}\left(c^{2}+v u_{x}\right)
$$

Evaluated in frame $F^{\prime}: \quad U=(c, 0,0), \quad V=\gamma_{w}\left(c, w_{x}, w_{y}\right)$

$$
\Longrightarrow U \cdot V=c^{2} \gamma_{w}
$$

Hence

$$
\gamma_{w}=\gamma \gamma_{u}\left(1+\frac{v u_{x}}{c^{2}}\right)
$$

Basic Quantities used in Accelerator Calculations

Relative velocity $\quad \beta=\frac{v}{c}$
Velocity $\quad v=\beta c$
Momentum $\quad p=m v=m_{0} \gamma v=m_{0} \gamma \beta c$
Kinetic energy $\quad T=m c^{2}-m_{0} c^{2}=(\gamma-1) m_{0} c^{2}=(\gamma-1) E_{0}$

$$
\begin{aligned}
\gamma & =\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}=\left(1-\beta^{2}\right)^{-\frac{1}{2}} \\
\Longrightarrow \quad(\beta \gamma)^{2} & =\frac{\gamma^{2} v^{2}}{c^{2}}=\gamma^{2}-1 \quad \Longrightarrow \quad \beta^{2}=\frac{v^{2}}{c^{2}}=1-\frac{1}{\gamma^{2}}
\end{aligned}
$$

Science \& Technology Facilities Council

Velocity and Energy

Relativistic Velocity as a function of Kinetic Energy

$$
\begin{aligned}
& T=m_{0} c^{2}(\gamma-1)=E_{0}(\gamma-1) \\
& \gamma=1+\frac{T}{m_{0} c^{2}}=1+\frac{T}{E_{0}} \\
& \beta=\sqrt{1-\frac{1}{\gamma^{2}}} \\
& p=m_{0} \beta \gamma c=\frac{E_{0}}{c} \beta \gamma
\end{aligned}
$$

For $v \ll c, \quad \gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}} \approx 1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\frac{3}{8} \frac{v^{4}}{c^{4}}+\ldots$

$$
\text { so } \quad T=m_{0} c^{2}(\gamma-1) \approx \frac{1}{2} m_{0} v^{2}
$$

Energy-Momentum

- Important invariant:

$$
\begin{aligned}
P=(E / c, \mathbf{p}) & \Longrightarrow P \cdot P=E^{2} / c^{2}-\mathbf{p}^{2} \\
\text { and } \quad P=m_{0} V & \Longrightarrow P \cdot P=m_{0}^{2} V \cdot V=m_{0}^{2} c^{2}=E_{0}^{2} / c^{2}
\end{aligned}
$$

$$
\frac{E^{2}}{c^{2}}=\mathbf{p}^{2}+m_{0}^{2} c^{2} \quad \text { or } \quad E^{2}=\mathbf{p}^{2} c^{2}+E_{0}^{2}
$$

$$
\Longrightarrow \quad p^{2} c^{2}=E^{2}-E_{0}^{2}=\left(E-E_{0}\right)\left(E+E_{0}\right)=T\left(T+2 E_{0}\right)
$$

Example: ISIS at RAL accelerates protons $\left(E_{0}=938 \mathrm{MeV}\right)$ to 800 MeV

$$
\begin{aligned}
\Longrightarrow p c & =\sqrt{800 \times(800+2 \times 938)} \mathrm{MeV} \\
& =1.463 \mathrm{GeV}
\end{aligned}
$$

$$
\begin{aligned}
\beta \gamma & =\frac{m_{0} \beta \gamma c^{2}}{m_{0} c^{2}}=\frac{p c}{E_{0}}=1.56 \\
\gamma^{2} & =(\beta \gamma)^{2}+1 \Longrightarrow \gamma=1.85 \\
\beta & =\frac{\beta \gamma}{\gamma}=0.84
\end{aligned}
$$

Relationships between small variations in parameters $\Delta \mathrm{E}, \Delta \mathrm{T}, \Delta \mathrm{p}, \Delta \beta, \Delta \gamma$

$$
\begin{align*}
& (\beta \gamma)^{2}=\gamma^{2}-1 \\
& \Longrightarrow \beta \gamma \Delta(\beta \gamma)=\gamma \Delta \gamma \\
& \Longrightarrow \quad \beta \Delta(\beta \gamma)=\Delta \gamma \tag{1}\\
& \frac{\Delta p}{p}=\frac{\Delta\left(m_{0} \beta \gamma c\right)}{m_{0} \beta \gamma c}=\frac{\Delta(\beta \gamma)}{\beta \gamma} \\
& =\frac{1}{\beta^{2}} \frac{\Delta \gamma}{\gamma}=\frac{1}{\beta^{2}} \frac{\Delta E}{E} \\
& =\gamma^{2} \frac{\Delta \beta}{\beta} \\
& =\frac{\gamma}{\gamma+1} \frac{\Delta T}{T} \quad \text { (exercise) }
\end{align*}
$$

Note: valid to first order only

	$\frac{\Delta \beta}{\beta}$	$\frac{\Delta p}{p}$	$\frac{\Delta T}{T}$	$\frac{\Delta E}{E}=\frac{\Delta \gamma}{\gamma}$
$\frac{\Delta \beta}{\beta}=$	$\frac{\Delta \beta}{\beta}$	$\frac{1}{\gamma^{2}} \frac{\Delta p}{p}$		$\frac{1}{p}-\frac{\Delta \gamma}{\gamma}$
	$\frac{1}{\gamma(\gamma+1)} \frac{\Delta T}{T}$	$\frac{1}{\beta^{2} \gamma^{2}} \frac{\Delta \gamma}{\gamma}$		
$\frac{\Delta p}{p}=$	$\gamma^{2} \frac{\Delta \beta}{\beta}$	$\frac{\Delta p}{p}$	$\frac{\gamma}{\gamma+1} \frac{\Delta T}{T}$	$\frac{1}{\beta^{2}} \frac{\Delta \gamma}{\gamma}$
$\frac{\Delta T}{T}=$	$\gamma(\gamma+1) \frac{\Delta \beta}{\beta}$	$\left(1+\frac{1}{\gamma}\right) \frac{\Delta p}{p}$	$\frac{\Delta T}{T}$	$\frac{\gamma}{\gamma-1} \frac{\Delta \gamma}{\gamma}$
$\frac{\Delta E}{E}=$	$(\beta \gamma)^{2} \frac{\Delta \beta}{\beta}$	$\beta^{2} \frac{\Delta p}{p}$	$\left(1-\frac{1}{\gamma}\right) \frac{\Delta T}{T}$	$\frac{\Delta \gamma}{\gamma}$
$\frac{\Delta \gamma}{\gamma}=$	$\left(\gamma^{2}-1\right) \frac{\Delta \beta}{\beta}$	$\frac{\Delta p}{p}-\frac{\Delta \beta}{\beta}$		

Table 1: Incremental relationships between energy, velocity and momentum.

4-Momentum Conservation

- Equivalent expression for 4-momentum

$$
P=m_{0} \gamma(c, \vec{v})=(m c, \vec{p})=\left(\frac{E}{c}, \vec{p}\right)
$$

- Invariant

$$
m_{0}^{2} c^{2}=P \cdot P=\frac{E^{2}}{c^{2}}-\vec{p}^{2} \quad \Longrightarrow \frac{E^{2}}{c^{2}}=\vec{p}^{2}+m_{0}^{2} c^{2}
$$

- Classical conservation laws:
- conservation of total mass
- conservation of total 3-momentum
- In relativity, mass equivalent to energy (incl. rest energy)

$$
\Longrightarrow \sum_{\text {particles } i} E_{i} \quad \text { and } \quad \sum_{\text {particles } i} \mathbf{p}_{i} \text { constant }
$$

$$
\Longrightarrow \text { total 4-momentum } \sum_{\text {particles } i} P_{i} \text { constant }
$$

A body of mass M disintegrates while at rest into two parts of rest masses M_{1} and M_{2}.

Show that the energies of the parts are given by

$$
E_{1}=c^{2} \frac{M^{2}+M_{1}^{2}-M_{2}^{2}}{2 M}, \quad E_{2}=c^{2} \frac{M^{2}-M_{1}^{2}+M_{2}^{2}}{2 M}
$$

Solution

Before:

$$
P=(M c, \overrightarrow{0})
$$

$$
P_{2}=\left(\frac{E_{2}}{c},-\vec{p}\right)
$$

Conservation of 4-momentum:

$$
\begin{aligned}
P=P_{1}+P_{2} & \Rightarrow P-P_{1}=P_{2} \\
& \Rightarrow\left(P-P_{1}\right) \cdot\left(P-P_{1}\right)=P_{2} \cdot P_{2} \\
& \Rightarrow P \cdot P-2 P \cdot P_{1}+P_{1} \cdot P_{1}=P_{2} \cdot P_{2} \\
& \Rightarrow M^{2} c^{2}-2 M E_{1}+M_{1}^{2} c^{2}=M_{2}^{2} c^{2} \\
& \Rightarrow E_{1}=\frac{M^{2}+M_{1}^{2}-M_{2}^{2}}{2 M} c^{2}
\end{aligned}
$$

Example of use of invariants

- Two particles have equal rest mass m_{0}.
- Frame 1: one particle at rest, total energy is E_{1}.
- Frame 2: centre of mass frame where velocities are equal and opposite, total energy is E_{2}.

Problem: Relate E_{1} to E_{2}

$$
\begin{aligned}
& P_{1}= \stackrel{\left(\frac{E_{1}-m_{0} c^{2}}{c}, \vec{p}\right)}{\odot} \\
& P_{2}=\left(m_{0} c, \overrightarrow{0}\right)
\end{aligned}
$$

Total energy E_{1}
(Fixed target experiment)

Total energy E_{2}

(Colliding beams experiment)

Invariant: $\quad P_{2} \cdot\left(P_{1}+P_{2}\right)$

$$
\begin{aligned}
& m_{0} c \times \frac{E_{1}}{c}-0 \times p=\frac{E_{2}}{2 c} \times \frac{E_{2}}{c}+p^{\prime} \times 0 \\
& \Rightarrow \quad 2 m_{0} c^{2} E_{1}=E_{2}^{2}
\end{aligned}
$$

Collider Problem

In an accelerator, a proton p_{1} with rest mass m_{0} collides with an anti-proton p_{2} (with the same rest mass), producing two particles W_{1} and W_{2} with equal rest mass $\mathrm{M}_{0}=100 \mathrm{~m}_{0}$

- Experiment 1: p_{1} and p_{2} have equal and opposite velocities in the lab frame. Find the minimum energy of p_{2} in order for W_{1} and W_{2} to be produced.
- Experiment 2: in the rest frame of p_{1}, find the minimum energy E^{\prime} of p_{2} in order for W_{1} and W_{2} to be produced.

EnT3Timant

$\frac{E^{2}}{c^{2}}=\vec{p}^{2}+m_{0}^{2} c^{2}$
Particles with same rest-mass and same momentum have same energies.

Total 3-momentum is zero before collision, so is zero afterwards
4-momenta before collision:

$$
P_{1}=\left(\frac{E}{c}, \vec{p}\right) \quad P_{2}=\left(\frac{E}{c},-\vec{p}\right)
$$

4-momenta after collision:

$$
P_{1}=\left(\frac{E^{\prime}}{c}, \vec{q}\right) \quad P_{2}=\left(\frac{E^{\prime}}{c},-\vec{q}\right)
$$

Total energy is conserved $\Longrightarrow 2 E=2 E^{\prime}$

$$
\Longrightarrow E=E^{\prime}>\text { rest energy }=M_{0} c^{2}=100 m_{0} c^{2}
$$

Before collision
$P_{1}=\left(m_{0} c, \overrightarrow{0}\right), \quad P_{2}=\left(\frac{E^{\prime}}{c}, \vec{p}\right)$
Total energy is $E_{1}=E^{\prime}+m_{0} c^{2}$

Use previous result $2 m_{0} c^{2} E_{1}=E_{2}^{2}$ to relate E_{1} to total energy E_{2} in the centre of mass frame

$$
\begin{gathered}
2 m_{0} c^{2} E_{1}=E_{2}^{2} \\
\Longrightarrow 2 m_{0} c^{2}\left(E^{\prime}+m_{0} c^{2}\right)=(2 E)^{2}>\left(200 m_{0} c^{2}\right)^{2} \\
\Longrightarrow E^{\prime}>\left(2 \times 10^{4}-1\right) m_{0} c^{2} \approx 20,000 m_{0} c^{2}
\end{gathered}
$$

Photons and Wave 4-Vectors

- Monochromatic plane wave: $\sin (\omega t-\vec{k} \cdot \vec{x})$
- \vec{k} is the wave vector, $|\vec{k}|=\frac{2 \pi}{\lambda} ; \omega$ is the angular frequency, $\omega=2 \pi \nu$
- The phase $\frac{1}{2 \pi}(\omega t-\vec{k} \cdot \vec{x})$ is the number of wave crests passing an observer
- Invariant:

$$
\omega t-\vec{k} \cdot \vec{x}=(c t, \vec{x}) \cdot\left(\frac{\omega}{c}, \vec{k}\right)
$$

Position 4-vector Wave 4-vector

- 4-momentum $P=\left(\frac{E}{c}, p\right)=\hbar\left(\frac{\omega}{c}, k\right)=\hbar K$

Relativistic Doppler Shift

For light rays $\omega=c|\vec{k}|$ so $K=\left(\frac{\omega}{c}, \vec{k}\right)$ is a null vector
and can be written $K=\frac{\omega}{c}(1, \vec{n})$ where $|\vec{n}|=1$.

Science \& Technology Facilities Council

Relativistic Doppler Shift

For light rays $\omega=c|\vec{k}|$ so $K=\left(\frac{\omega}{c}, \vec{k}\right)$ is a null vector
and can be written $K=\frac{\omega}{c}(1, \vec{n})$ where $|\vec{n}|=1$.

Note there is a transverse Doppler effect even when $\theta=\frac{1}{2} \pi$

4-Acceleration

- 4-Acceleration=rate of change of 4-Velocity

$$
A=\frac{\mathrm{d} V}{\mathrm{~d} \tau}=\gamma \frac{\mathrm{d}}{\mathrm{~d} t}(\gamma c, \gamma \vec{v})
$$

- Use $\frac{1}{\gamma^{2}}=1-\frac{\vec{v} \cdot \vec{v}}{c^{2}} \Longrightarrow \frac{1}{\gamma^{3}} \frac{\mathrm{~d} \gamma}{\mathrm{~d} t}=\frac{\vec{v} \cdot \dot{\vec{v}}}{c^{2}}=\frac{\vec{v} \cdot \vec{a}}{c^{2}}$

$$
A=\gamma\left(\gamma^{3} \frac{\vec{v} \cdot \vec{a}}{c}, \gamma \vec{a}+\gamma^{3}\left(\frac{\vec{v} \cdot \vec{a}}{c^{2}}\right) \vec{v}\right)
$$

- In instantaneous rest-frame $\quad A=(0, \vec{a}), \quad A \cdot A=-|\vec{a}|^{2}$

Radiation from an accelerating charge

- Rate of radiation, R, known to be invariant and proportional to $|\vec{a}|^{2}$ in instantaneous rest frame.
- But in instantaneous rest-frame $A \cdot A=-|\vec{a}|^{2}$
- Deduce $\quad R \propto A \cdot A=-\gamma^{6}\left(\left(\frac{\vec{v} \cdot \vec{a}}{c}\right)^{2}+\frac{1}{\gamma^{2}} \vec{a}^{2}\right)$
- Rearranged:

$$
R=\frac{e^{2}}{6 \pi \epsilon_{0} c^{3}} \gamma^{6}\left[|\vec{a}|^{2}-\frac{(\vec{a} \times \vec{v})^{2}}{c^{2}}\right]
$$

Relativistic Larmor Formula

If $\vec{a} \| \vec{v}, R \propto \gamma^{6}$, but if $\vec{a} \perp \vec{v}, R \propto \gamma^{4}$

Motion under constant acceleration; world lines

- Introduce rapidity ρ defined by

$$
\beta=\frac{v}{c}=\tanh \rho \quad \Longrightarrow \gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\cosh \rho
$$

- Then $V=\gamma(c, v)=c(\cosh \rho, \sinh \rho)$
- And $\quad A=\frac{\mathrm{d} V}{\mathrm{~d} \tau}=c(\sinh \rho, \cosh \rho) \frac{\mathrm{d} \rho}{\mathrm{d} \tau}$
- So constant acceleration satisfies

$$
a^{2}=|\vec{a}|^{2}=-A \cdot A=c^{2}\left(\frac{\mathrm{~d} \rho}{\mathrm{~d} \tau}\right)^{2} \Longrightarrow \frac{\mathrm{~d} \rho}{\mathrm{~d} \tau}=\frac{a}{c}, \text { so } \rho=\frac{a \tau}{c}
$$

Particle Paths

$$
\frac{\mathrm{d} x}{\mathrm{~d} \tau}=\gamma \frac{\mathrm{d} x}{\mathrm{~d} t}=\gamma v=c \sinh \rho=c \sinh \frac{a \tau}{c}
$$

$$
\Longrightarrow x=x_{0}+\frac{c^{2}}{a}\left(\cosh \frac{a \tau}{c}-1\right)
$$

$$
\frac{\mathrm{d} t}{\mathrm{~d} \tau}=\gamma=\cosh \rho=\cosh \frac{a \tau}{c}
$$

$$
\Longrightarrow t=\frac{c}{a} \sinh \frac{a \tau}{c}
$$

$$
\begin{gathered}
\cosh ^{2} \rho-\sinh ^{2} \rho=1 \\
\Longrightarrow\left(x-x_{0}+\frac{c^{2}}{a}\right)^{2}-c^{2} t^{2}=\frac{c^{4}}{a^{2}} \\
\begin{array}{c}
\text { Relativistic paths } \\
\text { are hyperbolic }
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
x & =x_{0}+\frac{c^{2}}{a}\left(1+\frac{1}{2} \frac{a^{2} \tau^{2}}{c^{2}}+\ldots-1\right) \\
& \approx x_{0}+\frac{1}{2} a \tau^{2} \quad \begin{array}{l}
\text { Non-relativistic } \\
\text { paths are } \\
\text { parabolic }
\end{array} \\
& \approx \frac{c}{a} \times \frac{a \tau}{c}=\tau \quad \begin{array}{l}
\text { pa }
\end{array}
\end{aligned}
$$

Relativistic Lagrangian and Hamiltonian Formulation

4-force equation of motion under a potential V :

$$
\begin{gathered}
\vec{f}=-\nabla V=\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}=m_{0} \frac{\mathrm{~d}}{\mathrm{~d} t}(\gamma \vec{v}) \\
\Longrightarrow m_{0} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\dot{x}}{\sqrt{1-v^{2} / c^{2}}}\right)=-\frac{\partial V}{\partial x} \quad \text { etc., where } v^{2}=\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}
\end{gathered}
$$

Compare with standard Lagrangian formulation: $\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{\partial L}{\partial x}$.

Deduce Relativistic Langangian:

$$
\mathcal{L}=-m_{0} c^{2}\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}-V=-\frac{m_{0} c^{2}}{\gamma}-V
$$

Note: $\mathcal{L} \neq \mathrm{T}-\mathrm{V}$

Hamiltonian \mathcal{H}, by definition:

$$
\begin{aligned}
\mathcal{H} & =\sum_{x, y, z} \dot{x} \frac{\partial \mathcal{L}}{\partial \dot{x}}-\mathcal{L}=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-\mathcal{L} \\
& =m_{0} \gamma v^{2}+\frac{m_{0} c^{2}}{\gamma}+V=m_{0} \gamma c^{2}+V \\
& =T+V, \quad \text { Total Energy }
\end{aligned}
$$

Since $E^{2}=\vec{p}^{2} c^{2}+m_{0}^{2} c^{4}$,

$$
\mathcal{H}=c\left(\vec{p}^{2}+m_{0}^{2} c^{2}\right)^{\frac{1}{2}}+V
$$

Then Hamilton's equations of motion are:

$$
\dot{\vec{p}}=-\frac{\partial \mathcal{H}}{\partial \vec{x}}, \quad \dot{\vec{x}}=\frac{\partial \mathcal{H}}{\partial \vec{p}}
$$

Motion faster than light

1. Two rods sliding over each other. Speed of intersection point is $\mathrm{v} /$ sina, which can be made greater than c .

2. Explosion of planetary nebula. Observer sees bright spot spreading out. Light from P arrives $\mathrm{t}=\mathrm{da}^{2} / 2 \mathrm{c}$ later.
$t=\frac{d \alpha^{2}}{2 c} \approx \frac{x}{c} \frac{\alpha}{2} \ll \frac{x}{c}$

