
Electromagnetism

Christopher R Prior

ASTeC Intense Beams Group
Rutherford Appleton 

Laboratory

Emeritus Fellow
Trinity College, Oxford



2

Contents

• Review of Maxwell’s equations and Lorentz Force Law 
• Motion of a charged particle under constant 

Electromagnetic fields 
• Relativistic transformations of fields 
• Electromagnetic energy conservation 
• Electromagnetic waves 

– Waves in vacuo 
– Waves in conducting medium 

• Waves in a uniform conducting guide 
– Simple example TE01 mode 
– Propagation constant, cut-off frequency 
– Group velocity, phase velocity 
– Illustrations



3

Reading

• J.D. Jackson: Classical Electrodynamics (Wiley, 1998) 
• H.D. Young, R.A. Freedman & L. Ford: University Physics 

(with Modern Physics) (Addison-Wesley,2007) 
• P.C. Clemmow: Electromagnetic Theory (CUP, 1973) 
• Feynmann Lectures on Physics (Basic Books, 2011) 
• W.K.H. Panofsky & M.N. Phillips: Classical Electricity and 

Magnetism (Addison-Wesley, 2005) 
• G.L. Pollack & D.R. Stump: Electromagnetism (Addison-

Wesley, 2001)



Gradient is normal to

surface ' = constant.

For a scalar function �(x, y, z, t),

gradient: ⇤� =
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For a vector

⇤F =

�
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�
:

divergence: ⇤ · ⇤F =
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Vector Calculus



r · ~F ^ ~G = ~G ·r^ ~F � ~F ·r^ ~G

r^r� = 0, r ·r^ ~F = 0

r^ (r^ ~F ) = r(r · ~F )�r2 ~F

Stokes’ Theorem

Basic Vector Calculus
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Divergence or Gauss’ 
Theorem

Closed surface S, volume V, 
outward pointing normal

ZZ

S

⇥� �F · d�S =

I

C

�F · d�r ZZZ

V

� · �F dV =

ZZ

S

�F · d�S
�nd�S = �n dS

Oriented
boundary C

as we have in Green’s Theorem. The line integral
∮

C
F⃗ · T⃗ ds

computes the circulation around the path C while
∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dx dy

provides the accumulative effect of the curl of F⃗ over the entire region D or S .

EXAMPLE 2 Suppose we are given the curl of F⃗ , ∇ × F⃗ = ⟨2y, −2z, 3⟩ , but not the function F⃗ itself.
Our surface is the upper hemisphere of radius 3. That is, S = {(x, y, z) : x2 + y2 + z2 = 9, z ≥ 0} . Our
objective is to evaluate the surface integral

∫∫

S(∇ × F⃗ ) · n⃗ dσ .

(a) Use spherical coordinates to parametrize S

g(θ, ϕ) =

⎛

⎝

3 sinϕ cos θ
3 sinϕ sin θ

3 cos ϕ

⎞

⎠

0 ≤ θ ≤ 2π

0 ≤ ϕ ≤ π/2

We have

n⃗ = −
(

∂g

∂θ
× ∂g

∂ϕ

)

=
∂g

∂ϕ
× ∂g

∂θ
= ⟨9 sin2 ϕ cos θ, 9 sin2 ϕ sin θ, 9 sinϕ cos ϕ⟩

(∇ × F⃗ )
(

g(θ, ϕ)
)

= ⟨6 sinϕ sin θ, −6 cos ϕ, 3⟩
(∇ × F⃗ ) · n⃗ = 54 sin3 ϕ sin θ cos θ − 54 sin2 ϕ cos ϕ sin θ + 27 sinϕ cos ϕ

Evaluating
∫∫

S
(∇ × F⃗ ) · n⃗ dσ we have

∫ π/2

0

∫ 2π

0
54 sin3 ϕ sin θ cos θ − 54 sin2 ϕ cos ϕ sin θ + 27 sinϕ cos ϕ dθ dϕ = 27π

(b) Now we observe that the boundary of S is the circle
C = {(x, y, 0) : x2 + y2 = 9} , which just happens to be the boundary of the disk
D = {(x, y, z) : x2 + y2 ≤ 9, z = 0} . So we apply Stoke’s theorem twice.

∫∫

S
(∇ × F⃗ ) · n⃗ dσ =

∮

C
F⃗ · dr⃗ =

∫∫

D
(∇ × F⃗ ) · n⃗ dσ

But on D , n⃗ = k⃗ = ⟨0, 0, 1⟩ which means that ∇ × F⃗ ) · n⃗ = ⟨2y, 0, 3⟩ · ⟨0, 0, 1⟩ = 3 And we have
∫∫

D
3 dσ = (3) (area(D)) = (3)(9π) = 27π

Note that we were able to avoid needing to know F⃗ .

Example 3, Maple Verify Stoke’s Theorem for F⃗ (x, y, z) = ⟨y2, x,−xz⟩ on the paraboloid z = 25−x2 −
y2 , z ≥ 0.
> with(student): with(plots): with(linalg):
> F:=[yˆ2,x,-x*z];

F := [y2, x,−xz]
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What is Electromagnetism?

• The study of Maxwell’s equations, devised in 1863 to 
represent the relationships between electric and magnetic 
fields in the presence of electric charges and currents, 
whether steady or rapidly fluctuating, in a vacuum or in 
matter. 

• The equations represent one of the most elegant and 
concise way to describe the fundamentals of electricity and 
magnetism. They pull together in a consistent way earlier 
results known from the work of Gauss, Faraday, Ampère, 
Biot, Savart and others. 

• Remarkably, Maxwell’s equations are perfectly consistent 
with the transformations of special relativity.
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Maxwell’s Equations
Relate Electric and Magnetic fields generated by 
charge and current distributions.

7

~E = electric field

~D = electric displacement

~H = magnetic field

~B = magnetic flux density

⇢ = electric charge density

~j = current density

µ0 = permeability of free space, 4⇡ 10

�7

✏0 = permittivity of free space, 8.854 10�12

c = speed of light, 2.99792458 108

In vacuum: ~D = ✏0 ~E, ~B = µ0
~H, ✏0µ0c

2 = 1

r · ~D = ⇢

r · ~B = 0

r^ ~E = �@ ~B

@t

r^ ~H = ~j +
@ ~D

@t



⇤E =
q

4⇥�0

⇤r

r3

=�
ZZ

sphere

⇤E · d⇤S =
q

4⇥�0

ZZ

sphere

dS

r2
=

q

�0

Equivalent to Gauss’ Flux Theorem:

The flux of electric field out of a closed region is proportional to the total 
electric charge Q enclosed within the surface.

A point charge q generates an electric field:

Maxwell’s 1st Equation ⇥ · ⌅E =
⇥

�0

r · ~E =
⇢

✏0
()

ZZZ

V

r · ~E dV =

ZZ

S

~E · d~S =
1

✏0

ZZZ

V

⇢ dV =
Q

✏0

Area integral gives a measure of the net charge enclosed; divergence of 
the electric field gives the density of the sources.
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Gauss’ law for magnetism:  
 

The net magnetic flux out of any 
closed surface is zero. Surround a 
magnetic dipole with a closed surface. 
The magnetic flux directed inward 
towards the south pole will equal the 
flux outward from the north pole. 
If there were a magnetic monopole 
source, this would give a non-zero 
integral. 

Maxwell’s 2nd Equation 
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r · ~B = 0 ()
ZZ

~B · d~S = 0

� · �B = 0

Gauss’ law for magnetism is then a statement that
There are no magnetic monopoles



Equivalent to Faraday’s Law of Induction:

(for a fixed circuit C)
The electromotive force round a circuit                                          

             is proportional to the rate of change of flux of 
magnetic field                           through the circuit. 

Maxwell’s 3rd Equation 
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ZZ

S

r^ ~E · d~S = �
ZZ

S

@ ~B

@t
· d~S

()
I

C

~E · d~l = � d

dt

ZZ

S

~B · d~S = �d�

dt

⇤⇥ ⇧E = �� ⇧B

�t

Faraday’s Law is the basis for electric generators. It also 
forms the basis for inductors and transformers.

Michael Faraday

" =

I
~E · d~l

� =

ZZ
~B · d~l



⇥B =
µ0I

4�

I
d⇥l ^ ⇥r

r3

Maxwell’s 4th Equation

André-Marie Ampère
1775-1836
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⇥� ⇥B = µ0
⇥j +

1
c2

� ⇥E

�t

Originates from Ampère’s (Circuital) Law :

Satisfied by the field for a steady line current 
(Biot-Savart Law, 1820):

r^ ~B = µ0
~j

I

C

�B · d�l =
ZZ

S

⇥� �B · d�S = µ0

ZZ

S

�j · d�S = µ0I

⇥B =
µ0I

2�r
For a straight line current

Jean-Baptiste Biot
1774-1862
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Displacement Current

Surface 1 Surface 2

Closed loop

Current I

• Faraday: vary B-field, generate E-field 
• Maxwell: varying E-field should then produce a B-field, but not covered by 

Ampère’s Law.

r^ ~B = µ0(~j +~jd) = µ0
~j + ✏0µ0

@ ~E

@t

• Apply Ampère to surface 1 (a flat disk):

the line integral of B = µ0I.

• Applied to surface 2, line integral is zero

since no current penetrates the deformed

surface.

• In a capacitor,

E =

Q

✏0A
and I =

dQ

dt
= ✏0A

dE

dt
,

so there is a current density

~jd = ✏0
@ ~E

@t
.
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Consistency with Charge Conservation

Charge conservation: 
Total current flowing out of a region 
equals the rate of decrease of charge 
within the volume. 

Charge conservation is implicit in Maxwell’s Equations

ZZ
~j · d~S = � d

dt

ZZZ
⇢ dV

()
ZZZ

r ·~j dV = �
ZZZ

@⇢

@t
dV

() r ·~j + @⇢

@t
= 0

From Maxwell’s equations:  
Take divergence of (modified) Ampère’s 
equation

⇤⇥ ⌅B = µ0
⌅j +

1

c2
⇤ ⌅E

⇤t

=� ⇤ ·⇤⇥ ⌅B = µ0⇤ ·⌅j + 1

c2
⇤

⇤t

�
⇤ · ⌅E

�

=� 0 = µ0⇤ ·⌅j + �0µ0
⇤

⇤t

✓
⇥

�0

◆

=� 0 = ⇤ ·⌅j + ⇤⇥

⇤t



In vacuum:

~D = ✏0 ~E, ~B = µ0
~H, ✏0µ0c

2
= 1

Source-free equations:

r · ~B = 0

r^ ~E +

@ ~B

@t
= 0

Source equations:

r · ~E =

⇢

✏0

r^ ~B � 1

c2
@ ~B

@t
= µ0

~j

Equivalent integral form (useful for

simple geometries):

ZZ
~E · d~S =

1

✏0

ZZZ
⇢ dV

ZZ
~B · d~S = 0

I
~E · d~l = � d

dt

ZZ
~B · d~S = �d�

dtI
~B · d~l = µ0

ZZ
~j d~S +

1

c2
d

dt

ZZ
~E · d~S

Maxwell’s Equations in Vacuum
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Maxwell’s Achievements 

• United electricity, magnetism and 
light 

• First colour photograph 
• Stimulated creation of information 

theory 
• Laid foundations of Control Theory 

and Cybernetics 
• Introduced statistical methods to 

physics 
• Maxwell’s “daemon” - first scientific 

thought experiment 
• Used polarised light to reveal strain 

patterns in a structure 
• Use of centrifuge to separate gases

The Man who Changed Everything

James Clerk Maxwell
1831-1879



Also from r^ ⇥E = �� ⇥B

�t

r^ ⇥B = µ0
⇥j +

1

c2
� ⇥E

�t
then gives current density necessary to

sustain the fields

Example: Calculate E from B
�

⌃E · d⌃l = � d
dt

⇥⇥
⌃B · d⌃S

!
"
#

>

<
=

0

00

0
sin

rr
rrtB

Bz
ω

r

z
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2�rE✓ = � d

dt
�r2B0 sin⇥t = ��r2B0⇥ cos⇥t

=) E✓ = �1

2

B0⇥r cos⇥t

r < r0

2�rE✓ = � d

dt
�r20B0 sin⇥t = ��r20B0⇥ cos⇥t

=) E✓ = �⇥r20B0

2r
cos⇥t

r > r0



�
�E · d�l = � d

dt

⇥⇥
�B · d�S

=⇤ 2�rE� = �d�
dt

The Betatron
Magnetic 
flux, Φ

Generated 
E-field

r

Particles accelerated by the rotational electric 
field generated by a time-varying magnetic field
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�mv2

r
= evB =⇥ B = � p

er

=⇥ ⇤

⇤t
B(r, t) = � 1

er

dp

dt
= �E

r
=

1
2�r2

d�
dt

=⇥ B(r, t) =
1
2

1
�r2

��
B dS

B-field on orbit needs to be one half the average B over the circle. This imposes a limit on the energy 
that can be achieved. Nevertheless the constant radius principle is attractive for high energy circular 
accelerators.

For circular motion at a  constant radius:



⇤ · �B = 0 =⇥
ZZZ

⇤ · �B dV =

ZZ
�B · d�S = 0

=⇥
⇣
�n · �B+ � �n · �B�

⌘
�S = 0

=⇥
h
�n · �B

i+
�
= 0

Boundary Conditions I
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1 

+

-

n

∆S

Maxwell’s equations involving divergence 
can be integrated over a small “pillbox” 
across the boundary surface

⇤ · ⇤D = � =⇥
ZZZ

⇤ · ⇤D dV =

ZZ
⇤D · d⇤S =

ZZZ
� dV

=⇥
⇣
⇤n · ⇤D+ � ⇤n · ⇤D�

⌘
�S = ⇥�S

=⇥
h
⇤n · ⇤D

i+
�
= ⇥ where ⇥ is the surface charge density



⇧⌅ ⇥E = �� ⇥B

�t
=⇤

ZZ
⇧⌅ ⇥E · d⇥S =

I
⇥E · d⇥l = � d

dt

ZZ
⇥B · d⇥S

=⇤
⇣
⇥E+
k � ⇥E�

k

⌘
�l ⇥ 0

=⇤
h
⇥n ⌅ ⇥E

i+
�
= 0

Boundary Conditions II
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1 

+

-
C

∆l

n

Maxwell’s equations involving curl can be integrated over a 
closed contour close to, and straddling, the boundary surface

⇧⌅ ⇥H = ⇥j +
� ⇥D

�t
=⇤

ZZ
⇧⌅ ⇥H · d⇥S =

I
⇥H · d⇥l =

ZZ
⇥j · d⇥S +

d

dt

ZZ
⇥D · d⇥S

=⇤
⇣
⇥H+
k � ⇥H�

k

⌘
�l ⇥ ⇥K�l

=⇤
h
⇥n ⌅ ⇥H

i+
�
= ⇥K where ⇥K is the surface current density



Lorentz Force Law

• Thought of as a supplement to Maxwell’s equations but actually 
implicit in relativistic formulation, gives force on a charged particle 
moving in an electromagnetic field: 

• For continuous distributions, use force density: 

• Relativistic equation of motion: 
– 4-vector form: 

– 3-vector component:       Energy component:

F =
dP

d⇥
=⇥ �

⇤
�v · �f

c
, �f

⌅
= �

�
1
c

dE

dt
,
d�p

dt

⇥

d

dt

�
m0�~v

�
= ~f = q

�
~E + ~v ^ ~B

�
~v · ~f =

dE

dt
= m0c

2 d�

dt
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�f = q
�
�E + �v ^ �B

�

⇥fd = � ⇥E +⇥j ^ ⇥B



d

dt

�
m0�⇥v

�
= ⇥f = q

�
⇥E + ⇥v � ⇥B

�
= q⇥v � ⇥B

d

dt

�
m0�c

2
�
= ⇥v · ⇥f = q⇥v · ⇥v � ⇥B = 0

Motion in Constant Magnetic Fields

• From energy equation, γ is constant

• From momentum equation,

21

No acceleration with a magnetic field

|⇥v| constant and |⇥v⇥| constant
=� |⇥v�| also constant

=� |�v| is constant

~B · d

dt
(�~v) = 0 = �

d

dt
(

~B · ~v) =)
��~vk

��
is constant



Motion in Constant Magnetic Field

Constant magnetic field gives 
uniform spiral about B with 

constant energy.

22

d

dt
(m0�⌅v) = q⌅v ^ ⌅B

=) d⌅v

dt
=

q

m0�
⌅v ^ ⌅B

=) v2?
⇥

=

q

m0�
v?B

=) circular motion with radius ⇥ =

m0�v?
qB

at an angular frequency ⇤ =

v?
⇥

=

qB

m0�
=

qB

m

Magnetic Rigidity

B⇥ =
m0�v

q
=

p

q



d

dt

�
m0�~v

�
= ~f = q

�
~E + ~v ^ ~B

�
=) d

dt

�
m0�~v

�
= q ~E
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Motion in Constant Electric Field

Constant E-field gives uniform acceleration in 
straight line

Solution is �⇥v =

q ⇥E

m0
t

Then �2
= 1 +

✓
�⇥v

c

◆2

=) � =

vuut
1 +

 
q ⇥Et

m0c

!2

If

⇥E = (E, 0, 0),
dx

dt
=

(�v)

�
=) x = x0 +

m0c2

qE

2

4
s

1 +

✓
qEt

m0c

◆2

� 1

3

5

⇡ x0 +
1

2

✓
qE

m0

◆
t2 for qE ⌧ m0c

Energy gain is m0c
2
(� � 1) = qE(x� x0)



• According to observer O in frame F, particle has velocity   , fields are     and 
and Lorentz force is 

• In Frame F’, particle is at rest and force is 

• Assume measurements give same charge and force, so

• Point charge q at rest in F:

• See a current in F’, giving a field

• Suggests

�E =
q

4⇥�0

�r

r3
, �B = 0

�v �E �B

Relativistic Transformations of E and B

⌅f � = q� ⌅E�

q� = q and ⇧E� = ⇧E + ⇧v � ⇧B

 B� = �µ0q

4⇥
 v ⇥  r

r3
= � 1

c2
 v ⇥  E

⇧B� = ⇧B � 1
c2

⇧v ⇥ ⇧E

24

�f = q
�
�E + �v ^ �B

�

Rou
gh

 id
ea



• According to observer O in frame F, particle has velocity   , fields are     and 
and Lorentz force is 

• In Frame F’, particle is at rest and force is 

• Assume measurements give same charge and force, so

• Point charge q at rest in F:

• See a current in F’, giving a field

• Suggests

�E =
q

4⇥�0

�r

r3
, �B = 0

�v �E �B

Relativistic Transformations of E and B

⌅f � = q� ⌅E�

q� = q and ⇧E� = ⇧E + ⇧v � ⇧B

 B� = �µ0q

4⇥
 v ⇥  r

r3
= � 1

c2
 v ⇥  E

⇧B� = ⇧B � 1
c2

⇧v ⇥ ⇧E

24

�f = q
�
�E + �v ^ �B

�⌥E�
⇥ = �

�
⌥E⇥ + ⌥v ⇥ ⌥B

⇥
, ⌥E�

⇤ = ⌥E⇤

⌥B�
⇥ = �

⇤
⌥B⇥ �

⌥v ⇥ ⌥E

c2

⌅
, ⌥B⇤ = ⌥B⇤



Potentials

• Magnetic vector potential 

• Electric scalar potential 

• Lorentz gauge 

– Use freedom to choose

25

⇧ · �B = 0 �⇥ ⇤ �A such that �B = ⇧⌅ �A

r^ ⇤E = �⇥ ⇤B

⇥t
() r^

 
⇤E +

⇥ ⇤A

⇥t

!
= 0

() 9� such that ⇤E = �r�� ⇥ ⇤A

⇥t

� ! �+ f(t), ⇤A ! ⇤A+r⇥

1

c2
⇥�

⇥t
+� · ⇤A = 0



1

c2
⇥�

⇥t
+⇤ · ⇤A = 0 =

✓
1

c

⇥

⇥t
,�⇤

◆
·
✓
1

c
�, ⇤A

◆
= ⇤4 · �

⇥ ⇥
4-gradient ⇤4 4-potential �

Electromagnetic 4-Vectors

• Lorentz gauge

• Current 4-vector

• Continuity equation
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3D: ⇤j = ⇥⇤v
4D: J = ⇥0V = ⇥0�(c,⇤v) = (c⇥,⇤j), where ⇥ = ⇥0�

⇥4 · J =

✓
1

c

⇥

⇥t
,�⇥

◆
· (c�,⇤j) = ⇥�

⇥t
+⇥ ·⇤j = 0



0

BBBBB@

1

c
⇥0

A0
x
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0
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� ��v

c
0 0

��v

c
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1
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1

c
⇥
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A
z
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Relativistic Transformation of Potentials

• 4-potential vector: 

• Lorentz transformation:
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=) ⇥0 = �(⇥� vA
x

)

A0
x

= �

✓
A

x

� v⇥

c2

◆
, A0

y

= A
y

, A0
z

= A
z

� =

✓
1

c
�, ⇥A

◆



t = �(t0 + vx0/c2)

x = �(x0 + vt0)

y = y0, z = z0

⌅B0 = r0 ^ ⌅A0 =) B0
z

=
⇤A0

y

⇤x0 � ⇤A0
x

⇤y0

=
⇤A

y

⇤x

⇤x

⇤x0 +
⇤A

y

⇤t

⇤t

⇤x0 � �
⇤

⇤y

✓
A

x

� v⇥

c2

◆

= �

✓
⇤A

y

⇤x
� ⇤A

x

⇤y
+

v

c2

✓
⇤A

y

⇤t
+

⇤⇥

⇤y

◆◆

= �
⇣
B

z

� v

c2
E

y

⌘

Relativistic Transformation of Fields
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⇥B0
k = ⇥Bk, ⇥B0

? = �

 
⇥B? � ⇥v ^ ⇥E

c2

!

⇥E0
k = ⇥Ek, ⇥E0

? = �
⇣
⇥E? + ⇥v ^ ⇥B

⌘



P has 0 = xp = �(x0
p + vt0) so x0

p = �vt0 and z0p = zp = b

Hence ⇥x0
p =

�
� vt0, 0, b

�
, so |⇥x0

p| ⇥ r0 =
⇤
b2 + v2t02,

where t0 = �
⇣
t� vxp

c2

⌘
= �t.

A charged particle moves along the x-axis of a frame F .

What fields does an observer P see?
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Example: E/M Field of a Single Particle

Observer P
z

b

charge qx

Frame F v Frame F’
z’

x’

Origins coincide 
at t=t"=0



In the frame of the particle F 0
, the fields are purely electrostatic, so

⇤B = 0, ⇤E =

q

4⇥�0r03
⇤x0
P

=) E0
x

= � qvt0

4⇥�0r03
, E0

y

= 0, E0
z

=

qb

4⇥�0r03

Observer P
z

b

charge qx

Frame F v Frame F’
z’

x’

Origins coincide 
at t=t"=0

⌅Ek = ⌅E0
k

⌅E0
? = �

�
⌅E0
? � ⌅v ^ ⌅B0�

)
=)

E
x

= E0
x

= � q�vt

4⇤⇥0(b2 + �2v2t2)3/2

E
y

= 0

E
z

= �E0
z

=
q�b

4⇤⇥0(b2 + �2v2t2)3/2



⇤Bk = ⇤B0
k

⇤B? = �

 
⇤B0
? +

⇤v ^ ⇤E0

c2

!

9
>>=

>>;
=)

B
x

= B
z

= 0

B
y

= ��v

c2
E0

z

= � v

c2
E

z

= � µ0q�vb

4⇥(b2 + �2v2t2)3/2

Note that in the non-relativistic limit � ⇡ 1,

⇤B ⇡ µ0

4⇥

q⇤v ^ ⇤r

r3

restoring the Biot-Savart law.

31



• Rate of doing work on unit volume of a system is

• Substitute for    from Maxwell’s equations and re-arrange:

• For linear, non-dispersive media where

32

Electromagnetic Energy 

Poynting vector

 
!
j

�⇥j · ⇥E = ⇥ · ⇥S +
�

�t

⇢
1

2
( ⇥E · ⇥D + ⇥B · ⇥H)

�

�⇥v · ⇥f = �⇥v ·
⇣
� ⇥E +⇥j ⇥ ⇥B

⌘
= ��⇥v · ⇥E = �⇥j · ⇥E

�⇥j · ⇥E =�
�
⇤⇥ ⇥H � � ⇥D

�t

�
· ⇥E

= ⇤ · ⇥E ⇥ ⇥H � ⇥H ·⇤⇥ ⇥E + ⇥E · �
⇥D

�t

= ⇤ · ⇥S + ⇥H · �
⇥B

�t
+ ⇥E · �

⇥D

�t
where ⇥S = ⇥E ⇥ ⇥H

⇥B = µ ⇥H, ⇥D = � ⇥E



�⇥j · ⇥E =
�

�t

⇢
1

2
( ⇥E · ⇥D + ⇥B · ⇥H)

�
+⇥ · ⇥S

dW

dt
=

d

dt

ZZZ
1

2
( �E · �D + �B · �H) dV +

ZZ
�E � �H · d�S

Energy Conservation

33

electric + magnetic 
energy densities of 

the fields

Poynting vector gives 
flux of e/m energy 
across boundaries

• Integrated over a volume, this represents an energy 
conservation law:  

– the rate of doing work on a system equals the rate of 
increase of stored electromagnetic energy+ rate of energy 
flow across boundary.



Review of Waves

• 1D wave equation is                         with general 
solution 

• Simple plane wave: 

• 3D wave equation:

�2u

�x2
=

1
v2

�2u

�t2

u(x, t) = f(vt� x) + g(vt + x)

Wavelength is � =
2⇤

|⌃k|

Frequency is ⇥ =
⌅

2⇤
34

1D: sin(!t� kx) 3D: sin(!t� ~

k · ~x)

Wavelength �

Amplitude a

Crest

Trough

r2~u =
1

v2
@2~u

@t2



��t� k�x = 0

⇥⇤ vp =
�x

�t
=

�

k

Superposition of plane waves. While 
shape is relatively undistorted, pulse 
travels with the Group Velocity

Phase and Group Velocities

Plane wave                      has constant 
phase                        at peaks

sin(�t� kx)
⇥t� kx = 1

2�

vg =
d�

dk
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Z 1

�1
A(k)ei[!(k)t�kx] dk



3D wave equation:

�2  E =
⇤2  E

⇤x2
+

⇤2  E

⇤y2
+

⇤2  E

⇤z2
= µ�

⇤2  E

⇤t2

Electromagnetic waves
• Maxwell’s equations predict the existence of electromagnetic waves, later 

discovered by Heinrich Hertz.
• No charges, no currents:

r^
�
r^ ⇤E

�
= �r ^ ⇥ ⇤B

⇥t

= � ⇥

⇥t

�
r^ ⇤B

�

= �µ
⇥2 ⇤D

⇥t2
= �µ�

⇥2 ⇤E

⇥t2

⇤⇥
�
⇤⇥ �E

�
=⇤

�
⇤ · �E

�
�⇤2 �E

= �⇤2 �E
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Similarly for

~H.

Electromagnetic waves travelling with

speed

1

p
✏µ

⇤⇥ ⇥H =
� ⇥D

�t
, ⇤⇥ ⇥E = �� ⇥B

�t

⇤ · ⇥D = 0, ⇤ · ⇥B = 0



Nature of Electromagnetic Waves
• A general plane wave with angular frequency ω travelling in the 

direction of the wave vector     has the form

• Phase                                 number of waves and so is a Lorentz 
invariant.

• Apply Maxwell’s equations:

• Waves are transverse to the direction of propagation;          and     are 
mutually perpendicular

⇥k

⇧E = ⇧E0e
i(�t�⌃k·⌃x), ⇧B = ⇧B0e

i(�t�⌃k·⌃x)

⇤ ⇥ �i⌃k
⇥

⇥t
⇥ i�
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!t� ~

k · ~x = 2⇡⇥

~E, ~B ~k

⇧ · ⇤E = 0 = ⇧ · ⇤B ⇥⇤ ⇤k · ⇤E = 0 = ⇤k · ⇤B

⇧⌅ ⇤E = �⇥ ⇤B

⇥t
⇥⇤ ⇤k ⌅ ⇤E = � ⇤B



Plane Electromagnetic Wave

39

Electromagnetic waves transport 
energy through empty space, stored in 
the propagating electric and magnetic 
fields.

Magnetic field 
variation is 
perpendicular to 
electric field and 
direction of 
propagation

Electric field 
variation

Magnetic field 
variation

A single-frequency electromagnetic wave 
exhibits a sinusoidal variation of electric 
and magnetic fields in space.



=� speed of electromagnetic waves in vacuum is
�

k
= c

Plane Electromagnetic Waves

Reminder: The fact that                        is an 
invariant tells us that

                 

is a Lorentz 4-vector, the 4-Frequency vector. 
Deduce frequency transforms as 

� =
��

c
,⇧k

⇥
�t� ⇧k · ⇧x

⇥� = �(⇥ � ⌃v · ⌃k) = ⇥

�
c� v

c + v

⇧⌅ �B =
1
c2

⇥ �E

⇥t
⇥⇤ �k ⌅ �B = � �

c2
�E

Combined with ⇥k ⇥ ⇥E = � ⇥B =� | ⇥E|
| ⇥B|

=
�

k
=

kc2

�
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Wavelength 

Frequency

� =
2⇡

|~k|

⌫ =
!

2⇡



Waves in a Conducting Medium

• (Ohm’s Law) For a medium of conductivity σ,                                      

• Modified Maxwell:                                   

• Put
conduction 

current
displacement 

current
Dissipation 

factor 

⌅j = � ⌅E

⇥� �H = �j + �
⇤ �E

⇤t
= ⇥ �E + �

⇤ �E

⇤t

�i�k ⇥ �H = ⇥ �E + i⇤� �E

D =
⇥

⇤�

⇧E = ⇧E0e
i(�t�⌃k·⌃x), ⇧B = ⇧B0e

i(�t�⌃k·⌃x)
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4
0
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7
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�i~k ^ ~H = � ~E + i!✏ ~E () ~k ^ ~H = i� ~E � !✏ ~E = (i� � !✏) ~E

Combine with r^ ~E = �@ ~B

@t
=) ~k ^ ~E = !µ ~H

=) ~k ^ (~k ^ ~E) = !µ~k ^ ~H = !µ(i� � !✏) ~E

=) (~k · ~E)~k � k2 ~E = !µ(i� � !✏) ~E

=) k2 = !µ(�i� + !✏) since ~k · ~E = 0

Attenuation in a Good Conductor

For a good conductor, D � 1, ⇤ � ⌅⇥, k2 ⇡ �i⌅µ⇤

=) k ⇡
r

⌅µ⇤

2

(1� i) =
1

�
(1� i) where � =

r
2

⌅µ⇤
is the skin-depth

Wave-form is: ei(!t�kx)
= ei(!t�(1�i)x/�)

= e�x/�

e

i(!t�x/�)
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• Inside a conductor (Ohm’s law)

• Continuity equation is

• Solution is

• Charge density decays exponentially with time. For a very good 
conductor, charge flows instantly to the surface to form a surface 
current density and (for time varying fields) a surface current. Inside a 
perfect conductor:

Charge Density in a Conducting Material
⌅j = � ⌅E

� = �0 e�⇥t/�
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@⇢

@t
+r ·~j = 0 () @⇢

@t
+ �r · ~E = 0

() @⇢

@t
+

�

✏
⇢ = 0.

(� ! 1) ~E = ~H = 0



r^ ~E = �@ ~B

@t
= �i!µ ~H

r^ ~H =
@ ~D

@t
= i!✏ ~E

9
>>>>=

>>>>;

=)

r2 ~E = r(r · ~E)�r ^r ^ ~E

= i!µr^ ~H

= �!2✏µ ~E
| {z }

�
r2 + !2✏µ

�⇢ ~E
~H

�
= 0

A Uniform Perfectly Conducting Guide

Hollow metallic cylinder with perfectly conducting boundary 
surfaces
Maxwell’s equations with time dependence eiωt are:

Assume 
)(

)(

),(),,,(

),(),,,(
zti

zti

eyxHtzyxH

eyxEtzyxE
γω

γω

−

−

=

=
!!

!!

γ is the propagation constant

Can solve for the fields completely 
in terms of Ez and Hz

45

Then
⇥
r2

t +
�
!2✏µ+ �2

�⇤⇢ ~E
~H

�
= 0

Helmholtz Equation

z
x

y



To satisfy boundary conditions: E = 0 on x = 0 and x = a.

=) E = A sinKx, with K = Kn ⌘ n�

a
, n integer

⌅E = (0, 1, 0)E(x)ei⇥t��z
where E satisfies

r2
tE =

d

2E

dx2
= �K2E, K2

= ⇤2⇥µ+ �2.

with solution E = A cosKx or A sinKx

Propagation constant is

� =

p
K2

n � ⌅2⇥µ =

n⇤

a

s

1�
✓

⌅

⌅c

◆2

, ⌅c =
Knp
⇥µ
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A simple model: “Parallel Plate Waveguide”

Transport between two infinite conducting plates (TE01 mode):

z

x

y

x=0 x=a



� =
n⇡

a

s

1�
✓

!

!c

◆2

, E = sin
n⇡x

a

e

i!t��z
, !c =

n⇡

a

p
✏µ
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Cut-off Frequency, ωc

! ω<ωc gives real solution for γ, so attenuation
only. No wave propagates: cut-off modes.

! ω>ωc gives purely imaginary solution for γ,
and a wave propagates without attenuation.

! For a given frequency ω only a finite number of
modes can propagate.

� = ik, k =
p
✏µ

�
!2 � !2

c

� 1
2 = !

p
✏µ

✓
1� !2

c

!2

◆ 1
2

! > !c =
n⇡

a
p
✏µ

=) n <
a!

⇡

p
✏µ For a given frequency, convenient to

choose a so that only mode n = 1 prop-

agates.



k =
p
✏µ

�
!2 � !2

c

� 1
2 < !

p
✏µ

� =
2⇡

k
>

2⇡

!
p
✏µ

,

k2 = ✏µ
�
!2 � !2

c

�
=) vg =

d!

dk
=

k

!✏µ
<

1
p
✏µ
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Phase and Group Velocities

vp =
!

k
>

1
p
✏µ

‣ free-space wavelength 

‣ larger than free-space 
velocity

‣ smaller than free-
space velocity 

• Wave number

• Wavelength                                    

• Phase velocity                                

• Group velocity



Calculation of Wave Properties
• If           cm, cut-off frequency of lowest order mode is

• At 7 GHz, only the n=1 mode propagates and

a = 3

fc =
!c

2⇡
=

1

2a
p
✏µ

⇡ 3⇥ 108

2⇥ 0.03
⇡ 5GHz

✓
!c =

n⇡

a
p
✏µ

◆

c
50

k =
p
✏µ

�
!2 � !2

c

� 1
2 ⇡ 2⇡(72 � 52)

1
2 ⇥ 109/3⇥ 108 = 103m�1

� =
2⇡

k
⇡ 6 cm

vp =
!

k
= 4.3⇥ 108 ms�1 > c

vg =
k

!✏µ
= 2.1⇥ 108 ms�1 < c



Electric energy: We =
1

4
✏

Z a

0
| ~E|2 dx =

1

8
✏A2a

Magnetic energy: Wm =
1

4
µ

Z a

0
| ~H|2 dx =

1

8
µA2a

(✓
n⇡

a!µ

◆2

+

✓
k

!µ

◆2
)

= We since k2 +
n2⇡2

a2
= !2✏µ

hsin2 !ti = hcos2 !ti = 1

2

, hsin!t cos!ti = 0

E
x

= E
z

= 0, E
y

= A sin

n�x

a
cos(⇥t� kz)

H
x

= � k

⇥µ
E

y

, H
y

= 0, H
z

= �A
n�

a⇥µ
cos

n�x

a
sin(⇥t� kz)
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Flow of EM Energy along the Guide

• Fields (ω>ωc) are:

• Time averaged energies:



• Poynting vector:

• Time averaged:

• Integrate over x:

• So energy is transported at a rate:

Flow of E/M Energy
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Electromagnetic energy is transported down the waveguide 
with the group velocity

~S = ~E ^ ~H =
�
E

y

H
z

, 0,�E
y

H
x

�

h~Si = 1

2
(0, 0, 1)

kA

2

!µ

sin2
n⇡x

a

hSzi =
1

4

kA2

!µ
a Total e/m energy 

density 

 
W =

1

4
✏A2a

hSzi
We +Wm

=
k

⇥�µ
= vg
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