Electromagnetism

Christopher R Prior

Emeritus Fellow
Trinity College, Oxford

ASTeC Intense Beams Group
Rutherford Appleton
Laboratory

Contents

- Review of Maxwell's equations and Lorentz Force Law
- Motion of a charged particle under constant Electromagnetic fields
- Relativistic transformations of fields
- Electromagnetic energy conservation
- Electromagnetic waves
- Waves in vacuo
- Waves in conducting medium
- Waves in a uniform conducting guide
- Simple example TE_{01} mode
- Propagation constant, cut-off frequency
- Group velocity, phase velocity
- Illustrations

Reading

- J.D. Jackson: Classical Electrodynamics (Wiley, 1998)
- H.D. Young, R.A. Freedman \& L. Ford: University Physics (with Modern Physics) (Addison-Wesley,2007)
- P.C. Clemmow: Electromagnetic Theory (CUP, 1973)
- Feynmann Lectures on Physics (Basic Books, 2011)
- W.K.H. Panofsky \& M.N. Phillips: Classical Electricity and Magnetism (Addison-Wesley, 2005)
- G.L. Pollack \& D.R. Stump: Electromagnetism (AddisonWesley, 2001)

Vector Calculus

For a scalar function $\varphi(x, y, z, t)$,
gradient: $\quad \nabla \varphi=\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right)$

Gradient is normal to surface $\varphi=$ constant.

For a vector $\vec{F}=\left(F_{1}, F_{2}, F_{3}\right)$:
divergence:

$$
\nabla \cdot \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

curl:

$$
\nabla \wedge \vec{F}=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)
$$

Basic Vector Calculus

$$
\begin{array}{r}
\nabla \cdot \vec{F} \wedge \vec{G}=\vec{G} \cdot \nabla \wedge \vec{F}-\vec{F} \cdot \nabla \wedge \vec{G} \\
\nabla \wedge \nabla \phi=0, \quad \nabla \cdot \nabla \wedge \vec{F}=0 \\
\nabla \wedge(\nabla \wedge \vec{F})=\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}
\end{array}
$$

Stokes' Theorem

Divergence or Gauss’
Theorem

$$
\iiint_{V} \nabla \cdot \vec{F} \mathrm{~d} V=\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}
$$

Closed surface S, volume V, outward pointing normal

What is Electromagnetism?

- The study of Maxwell's equations, devised in 1863 to represent the relationships between electric and magnetic fields in the presence of electric charges and currents, whether steady or rapidly fluctuating, in a vacuum or in matter.
- The equations represent one of the most elegant and concise way to describe the fundamentals of electricity and magnetism. They pull together in a consistent way earlier results known from the work of Gauss, Faraday, Ampère, Biot, Savart and others.
- Remarkably, Maxwell's equations are perfectly consistent with the transformations of special relativity.

Maxwell's Equations

Relate Electric and Magnetic fields generated by charge and current distributions.

\vec{E}	$=$ electric field
\vec{D}	$=$ electric displacement
\vec{H}	$=$ magnetic field
\vec{B}	$=$ magnetic flux density
ρ	$=$ electric charge density
\vec{j}	$=$ current density
μ_{0}	$=$ permeability of free space, $4 \pi 10^{-7}$
ϵ_{0}	$=$ permittivity of free space, 8.85410^{-12}
c	$=$ speed of light, 2.9979245810^{8}

$$
\begin{aligned}
\nabla \cdot \vec{D} & =\rho \\
\nabla \cdot \vec{B} & =0 \\
\nabla \wedge \vec{E} & =-\frac{\partial \vec{B}}{\partial t} \\
\nabla \wedge \vec{H} & =\vec{j}+\frac{\partial \vec{D}}{\partial t}
\end{aligned}
$$

In vacuum:

$$
\vec{D}=\epsilon_{0} \vec{E}, \quad \vec{B}=\mu_{0} \vec{H}, \quad \epsilon_{0} \mu_{0} c^{2}=1
$$

$\nabla \cdot \vec{E}=\frac{\rho}{\epsilon_{0}}$
 Maxwell's $1^{\text {st }}$ Equation

Equivalent to Gauss' Flux Theorem:
$\nabla \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} \Longleftrightarrow \iiint_{V} \nabla \cdot \vec{E} \mathrm{~d} V=\iint_{S} \vec{E} \cdot \mathrm{~d} \vec{S}=\frac{1}{\epsilon_{0}} \iiint_{V} \rho \mathrm{~d} V=\frac{Q}{\epsilon_{0}}$
The flux of electric field out of a closed region is proportional to the total electric charge Q enclosed within the surface.

A point charge q generates an electric field:

$$
\begin{gathered}
\vec{E}=\frac{q}{4 \pi \epsilon_{0}} \frac{\vec{r}}{r^{3}} \\
\iint_{\text {sphere }} \vec{E} \cdot \mathrm{~d} \vec{S}=\frac{q}{4 \pi \epsilon_{0}} \iint_{\text {sphere }} \frac{\mathrm{d} S}{r^{2}}=\frac{q}{\epsilon_{0}}
\end{gathered}
$$

Area integral gives a measure of the net charge enclosed; divergence of the electric field gives the density of the sources.

$\nabla \cdot \vec{B}=0 \quad$ Maxwell's $2^{\text {nd }}$ Equation

Gauss’ law for magnetism:
$\nabla \cdot \vec{B}=0 \Longleftrightarrow \iint \vec{B} \cdot \mathrm{~d} \vec{S}=0$
The net magnetic flux out of any closed surface is zero. Surround a magnetic dipole with a closed surface. The magnetic flux directed inward towards the south pole will equal the flux outward from the north pole.
If there were a magnetic monopole source, this would give a non-zero integral.

Gauss' law for magnetism is then a statement that There are no magnetic monopoles

$\nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
 Maxwell's $3^{\text {rd }}$ Equation

Equivalent to Faraday's Law of Induction:

$$
\begin{aligned}
& \iint_{S} \nabla \wedge \vec{E} \cdot \mathrm{~d} \vec{S}=-\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S} \\
\Longleftrightarrow & \oint_{C} \vec{E} \cdot \mathrm{~d} \vec{l}=-\frac{\mathrm{d}}{\mathrm{~d} t} \iint_{S} \vec{B} \cdot \mathrm{~d} \vec{S}=-\frac{\mathrm{d} \Phi}{\mathrm{~d} t}
\end{aligned}
$$

(for a fixed circuit C)
The electromotive force round a circuit

Michael Faraday
$\varepsilon=\oint \vec{E} \cdot \mathrm{~d} \vec{l}$ is proportional to the rate of change of flux of magnetic field $\Phi=\iint \vec{B} \cdot \mathrm{~d} \vec{l}$ through the circuit.

Faraday's Law is the basis for electric generators. It also forms the basis for inductors and transformers.

$\nabla \wedge \vec{B}=\mu_{0} \vec{j}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t} \quad$ Maxwell's 4 ${ }^{\text {th }}$ Equation

Originates from Ampère's (Circuital) Law : $\nabla \wedge \vec{B}=\mu_{0} \vec{j}$

André-Marie Ampère 1775-1836
 (Biot-Savart Law, 1820):

$$
\oint_{C} \vec{B} \cdot \mathrm{~d} \vec{l}=\iint_{S} \nabla \wedge \vec{B} \cdot \mathrm{~d} \vec{S}=\mu_{0} \iint_{S} \vec{j} \cdot \mathrm{~d} \vec{S}=\mu_{0} I
$$

Satisfied by the field for a steady line current

$$
\vec{B}=\frac{\mu_{0} I}{4 \pi} \oint \frac{\mathrm{~d} \vec{l} \wedge \vec{r}}{r^{3}}
$$

For a straight line current $\vec{B}=\frac{\mu_{0} I}{2 \pi r}$

Displacement Current

- Faraday: vary B-field, generate E-field
- Maxwell: varying E-field should then produce a B-field, but not covered by Ampère's Law.

Closed loop

- Apply Ampère to surface 1 (a flat disk): the line integral of $B=\mu_{0} I$.
- Applied to surface 2, line integral is zero since no current penetrates the deformed surface.
- In a capacitor,

$$
E=\frac{Q}{\epsilon_{0} A} \text { and } I=\frac{\mathrm{d} Q}{\mathrm{~d} t}=\epsilon_{0} A \frac{\mathrm{~d} E}{\mathrm{~d} t} \text {, }
$$

so there is a current density $\vec{j}_{d}=\epsilon_{0} \frac{\partial \vec{E}}{\partial t}$.

$$
\nabla \wedge \vec{B}=\mu_{0}\left(\vec{j}+\vec{j}_{d}\right)=\mu_{0} \vec{j}+\epsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}
$$

Consistency with Charge Conservation

Charge conservation:

Total current flowing out of a region equals the rate of decrease of charge within the volume.

$$
\begin{gathered}
\iint \vec{j} \cdot \mathrm{~d} \vec{S}=-\frac{\mathrm{d}}{\mathrm{~d} t} \iiint \rho \mathrm{~d} V \\
\Longleftrightarrow \iiint \nabla \cdot \vec{j} \mathrm{~d} V=-\iiint \frac{\partial \rho}{\partial t} \mathrm{~d} V \\
\Longleftrightarrow \nabla \cdot \vec{j}+\frac{\partial \rho}{\partial t}=0
\end{gathered}
$$

From Maxwell's equations:

Take divergence of (modified) Ampère's equation

$$
\begin{aligned}
\nabla & \wedge \vec{B}
\end{aligned}=\mu_{0} \vec{j}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}, ~\left(\nabla \vec{B}=\mu_{0} \nabla \cdot \vec{j}+\frac{1}{c^{2}} \frac{\partial}{\partial t}(\nabla \cdot \vec{E})\right)
$$

Charge conservation is implicit in Maxwell's Equations

Maxwell's Equations in Vacuum

In vacuum:
$\vec{D}=\epsilon_{0} \vec{E}, \quad \vec{B}=\mu_{0} \vec{H}, \quad \epsilon_{0} \mu_{0} c^{2}=1$
Source-free equations:

$$
\begin{aligned}
& \nabla \cdot \vec{B}=0 \\
& \nabla \wedge \vec{E}+\frac{\partial \vec{B}}{\partial t}=0
\end{aligned}
$$

Source equations:

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} \\
& \nabla \wedge \vec{B}-\frac{1}{c^{2}} \frac{\partial \vec{B}}{\partial t}=\mu_{0} \vec{j}
\end{aligned}
$$

Equivalent integral form (useful for simple geometries):

$$
\begin{aligned}
& \iint \vec{E} \cdot \mathrm{~d} \vec{S}=\frac{1}{\epsilon_{0}} \iiint \rho \mathrm{~d} V \\
& \iint \vec{B} \cdot \mathrm{~d} \vec{S}=0 \\
& \oint \vec{E} \cdot \mathrm{~d} \vec{l}=-\frac{\mathrm{d}}{\mathrm{~d} t} \iint \vec{B} \cdot \mathrm{~d} \vec{S}=-\frac{\mathrm{d} \Phi}{\mathrm{~d} t} \\
& \oint \vec{B} \cdot \mathrm{~d} \vec{l}=\mu_{0} \iint \vec{j} \mathrm{~d} \vec{S}+\frac{1}{c^{2}} \frac{\mathrm{~d}}{\mathrm{~d} t} \iint \vec{E} \cdot \mathrm{~d} \vec{S}
\end{aligned}
$$

The Man who Changed Everything

James Clerk Maxwell
1831-1879

Maxwell's Achievements

- United electricity, magnetism and light
- First colour photograph
- Stimulated creation of information theory
- Laid foundations of Control Theory and Cybernetics
- Introduced statistical methods to physics
- Maxwell's "daemon" - first scientific thought experiment
- Used polarised light to reveal strain patterns in a structure
- Use of centrifuge to separate gases

Example: Calculate E from B

$$
B_{z}=\left\{\begin{array}{cc}
B_{0} \sin \omega t & r<r_{0} \\
0 & r>r_{0}
\end{array}\right.
$$

Also from $\nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t}$

$$
\Longrightarrow E_{\theta}=-\frac{\omega r_{0}^{2} B_{0}}{2 r} \cos \omega t
$$

$\nabla \wedge \vec{B}=\mu_{0} \vec{j}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}$
then gives current density necessary to
sustain the fields

The Betatron

Particles accelerated by the rotational electric field generated by a time-varying magnetic field

$$
\begin{aligned}
\oint \vec{E} \cdot \mathrm{~d} \vec{l} & =-\frac{\mathrm{d}}{\mathrm{~d} t} \iint \vec{B} \cdot \mathrm{~d} \vec{S} \\
\Longrightarrow \quad 2 \pi r E_{\theta} & =-\frac{\mathrm{d} \Phi}{\mathrm{~d} t}
\end{aligned}
$$

For circular motion at a constant radius:

$$
-\frac{m v^{2}}{r}=e v B \quad \Longrightarrow \quad B=-\frac{p}{e r}
$$

$$
\Longrightarrow \frac{\partial}{\partial t} B(r, t)=-\frac{1}{e r} \frac{\mathrm{~d} p}{\mathrm{~d} t} \quad=\quad-\frac{E}{r}=\frac{1}{2 \pi r^{2}} \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}
$$

$$
\Longrightarrow B(r, t)=\frac{1}{2} \frac{1}{\pi r^{2}} \iint B \mathrm{~d} S
$$

B-field on orbit needs to be one half the average B over the circle. This imposes a limit on the energy that can be achieved. Nevertheless the constant radius principle is attractive for high energy circular accelerators.

Boundary Conditions I

Maxwell's equations involving divergence can be integrated over a small "pillbox" across the boundary surface

$$
\begin{aligned}
\nabla \cdot \vec{B}=0 & \Longrightarrow \iiint \nabla \cdot \vec{B} \mathrm{~d} V=\iint \vec{B} \cdot \mathrm{~d} \vec{S}=0 \\
& \Longrightarrow\left(\vec{n} \cdot \vec{B}^{+}-\vec{n} \cdot \vec{B}^{-}\right) \Delta S=0 \\
& \Longrightarrow[\vec{n} \cdot \vec{B}]_{-}^{+}=0
\end{aligned}
$$

$$
\nabla \cdot \vec{D}=\rho \Longrightarrow \iiint \nabla \cdot \vec{D} \mathrm{~d} V=\iint \vec{D} \cdot \mathrm{~d} \vec{S}=\iiint \rho \mathrm{d} V
$$

$$
\Longrightarrow\left(\vec{n} \cdot \vec{D}^{+}-\vec{n} \cdot \vec{D}^{-}\right) \Delta S=\sigma \Delta S
$$

$\Longrightarrow \quad[\vec{n} \cdot \vec{D}]_{-}^{+}=\sigma$ where σ is the surface charge density

Boundary Conditions II

Maxwell's equations involving curl can be integrated over a closed contour close to, and straddling, the boundary surface

$$
\begin{aligned}
& \nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t} \Longrightarrow \iint \nabla \wedge \vec{E} \cdot \mathrm{~d} \vec{S}=\oint \vec{E} \cdot \mathrm{~d} \vec{l}=-\frac{\mathrm{d}}{\mathrm{~d} t} \iint \vec{B} \cdot \mathrm{~d} \vec{S} \\
& \Longrightarrow\left(\vec{E}_{\|}^{+}-\vec{E}_{\|}^{-}\right) \Delta l \rightarrow 0 \\
& \Longrightarrow[\vec{n} \wedge \vec{E}]_{-}^{+}=0 \\
& \nabla \wedge \vec{H}=\vec{j}+\frac{\partial \vec{D}}{\partial t} \Longrightarrow \iint \nabla \wedge \vec{H} \cdot \mathrm{~d} \vec{S}=\oint \vec{H} \cdot \mathrm{~d} \vec{l}=\iint \vec{j} \cdot \mathrm{~d} \vec{S}+\frac{\mathrm{d}}{\mathrm{~d} t} \iint \vec{D} \cdot \mathrm{~d} \vec{S} \\
& \Longrightarrow\left(\vec{H}_{\|}^{+}-\vec{H}_{\|}^{-}\right) \Delta l \rightarrow \vec{K} \Delta l \\
& \Longrightarrow[\vec{n} \wedge \vec{H}]_{-}^{+}=\vec{K} \\
& \text { where } \vec{K} \text { is the surface current density }
\end{aligned}
$$

Lorentz Force Law

- Thought of as a supplement to Maxwell's equations but actually implicit in relativistic formulation, gives force on a charged particle moving in an electromagnetic field:

$$
\vec{f}=q(\vec{E}+\vec{v} \wedge \vec{B})
$$

- For continuous distributions, use force density:

$$
\overrightarrow{f_{d}}=\rho \vec{E}+\vec{j} \wedge \vec{B}
$$

- Relativistic equation of motion:
- 4-vector form: $F=\frac{d P}{d \tau} \Longrightarrow \gamma\left(\frac{\vec{v} \cdot \vec{f}}{c}, \vec{f}\right)=\gamma\left(\frac{1}{c} \frac{d E}{d t}, \frac{d \vec{p}}{d t}\right)$
- 3-vector component:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(m_{0} \gamma \vec{v}\right)=\vec{f}=q(\vec{E}+\vec{v} \wedge \vec{B})
$$

Energy component:

$$
\vec{v} \cdot \vec{f}=\frac{\mathrm{d} E}{\mathrm{~d} t}=m_{0} c^{2} \frac{\mathrm{~d} \gamma}{\mathrm{~d} t}
$$

Motion in Constant Magnetic Fields

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(m_{0} \gamma \vec{v}\right)=\vec{f}=q(\vec{E}+\vec{v} \wedge \vec{B})=q \vec{v} \wedge \vec{B} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t}\left(m_{0} \gamma c^{2}\right)=\vec{v} \cdot \vec{f}=q \vec{v} \cdot \vec{v} \wedge \vec{B}=0
\end{aligned}
$$

- From energy equation, γ is constant $\Longrightarrow|\vec{v}|$ is constant No acceleration with a magnetic field
- From momentum equation,

$$
\begin{gathered}
\vec{B} \cdot \frac{\mathrm{~d}}{\mathrm{~d} t}(\gamma \vec{v})=0=\gamma \frac{\mathrm{d}}{\mathrm{~d} t}(\vec{B} \cdot \vec{v}) \quad \Longrightarrow \quad\left|\vec{v}_{\|}\right| \text {is constant } \\
\begin{array}{l}
|\vec{v}| \text { constant and }\left|\vec{v}_{\|}\right| \text {constant } \\
\Longrightarrow\left|\vec{v}_{\perp}\right| \text { also constant }
\end{array}
\end{gathered}
$$

Motion in Constant Magnetic Field

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(m_{0} \gamma \vec{v}\right)= & q \vec{v} \wedge \vec{B} \\
\Longrightarrow & \frac{\mathrm{~d} \vec{v}}{\mathrm{~d} t}=\frac{q}{m_{0} \gamma} \vec{v} \wedge \vec{B} \\
\Longrightarrow & \frac{v_{\perp}^{2}}{\rho}=\frac{q}{m_{0} \gamma} v_{\perp} B \\
\Longrightarrow & \text { circular motion with radius } \quad \rho=\frac{m_{0} \gamma v_{\perp}}{q B} \\
& \text { at an angular frequency } \quad \omega=\frac{v_{\perp}}{\rho}=\frac{q B}{m_{0} \gamma}=\frac{q B}{m}
\end{aligned}
$$

Constant magnetic field gives uniform spiral about B with constant energy.

$$
\begin{aligned}
& B \rho=\frac{m_{0} \gamma v}{q}=\frac{p}{q} \\
& \text { Magnetic Rigidity }
\end{aligned}
$$

Motion in Constant Electric Field

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(m_{0} \gamma \vec{v}\right)=\vec{f}=q(\vec{E}+\vec{v} \wedge \vec{B}) \Longrightarrow \frac{\mathrm{d}}{\mathrm{~d} t}\left(m_{0} \gamma \vec{v}\right)=q \vec{E}
$$

Solution is $\quad \gamma \vec{v}=\frac{q \vec{E}}{m_{0}} t$
Then $\quad \gamma^{2}=1+\left(\frac{\gamma \vec{v}}{c}\right)^{2} \Longrightarrow \gamma=\sqrt{1+\left(\frac{q \vec{E} t}{m_{0} c}\right)^{2}}$
If $\begin{aligned} \vec{E}=(E, 0,0), \quad \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{(\gamma v)}{\gamma} \Longrightarrow x & =x_{0}+\frac{m_{0} c^{2}}{q E}\left[\sqrt{1+\left(\frac{q E t}{m_{0} c}\right)^{2}}-1\right] \\ & \approx x_{0}+\frac{1}{2}\left(\frac{q E}{m_{0}}\right) t^{2} \quad \text { for } \quad q E \ll m_{0} c\end{aligned}$
Energy gain is $\quad m_{0} c^{2}(\gamma-1)=q E\left(x-x_{0}\right)$
Constant E-field gives uniform acceleration in straight line

Relativistic Transformations of E and B

- According to observer O in frame F, particle has velocity \vec{v}, fields are \vec{E} and \vec{B} and Lorentz force is $\vec{f}=q(\vec{E}+\vec{v} \wedge \vec{B})$
- In Frame F^{\prime}, particle is at rest and force is $\left.\not\right)^{-}=q^{\prime} \vec{E}^{\prime}$
- Assume measurements give same çalge and force, so

$$
q^{\prime}=q \text { aru } \vec{E}^{\prime}=\vec{E}+\vec{v} \times \vec{B}
$$

- Point charge q at rest in $\mathrm{F}: \overrightarrow{\vec{~}}=\frac{q}{4 \pi \epsilon_{0}} \frac{\vec{r}}{r^{3}}, \quad \vec{B}=0$
- See a current in F giving a field

$$
\vec{B}^{\prime}=-\frac{\mu_{0} q}{4 \pi} \frac{\vec{v} \times \vec{r}}{r^{3}}=-\frac{1}{c^{2}} \vec{v} \times \vec{E}
$$

- Suggests $\quad \vec{B}^{\prime}=\vec{B}-\frac{1}{c^{2}} \vec{v} \times \vec{E}$

Relativistic Transformations of E and B

- Point charge q at rest in $\mathrm{F}: \quad \vec{E}=\frac{q}{4 \pi \epsilon_{0}} \frac{\vec{r}}{r^{3}}, \quad \vec{B}=0$
- See a current in F^{\prime}, giving a field

$$
\vec{B}^{\prime}=-\frac{\mu_{0} q}{4 \pi} \frac{\vec{v} \times \vec{r}}{r^{3}}=-\frac{1}{c^{2}} \vec{v} \times \vec{E}
$$

- Suggests $\quad \vec{B}^{\prime}=\vec{B}-\frac{1}{c^{2}} \vec{v} \times \vec{E}$

Potentials

- Magnetic vector potential

$$
\nabla \cdot \vec{B}=0 \Longleftrightarrow \exists \vec{A} \text { such that } \vec{B}=\nabla \wedge \vec{A}
$$

- Electric scalar potential

$$
\begin{aligned}
\nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \Longleftrightarrow \nabla \wedge\left(\vec{E}+\frac{\partial \vec{A}}{\partial t}\right)=0 \\
& \Longleftrightarrow \exists \phi \text { such that } \vec{E}=-\nabla \phi-\frac{\partial \vec{A}}{\partial t}
\end{aligned}
$$

- Lorentz gauge $\phi \rightarrow \phi+f(t), \quad \vec{A} \rightarrow \vec{A}+\nabla \chi$
- Use freedom to choose

$$
\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}+\nabla \cdot \vec{A}=0
$$

Electromagnetic 4-Vectors

- Lorentz gauge

$$
\begin{aligned}
& \frac{1}{c^{2}} \frac{\partial \phi}{\partial t}+\nabla \cdot \vec{A}=0=\left(\frac{1}{c} \frac{\partial}{\partial t},-\nabla\right) \cdot \underset{\uparrow}{\left(\frac{1}{c} \phi, \vec{A}\right)}=\nabla_{4} \cdot \Phi \\
& 4 \text {-gradient } \nabla_{4} \quad 4 \text {-potential } \Phi
\end{aligned}
$$

- Current 4-vector

$$
\begin{aligned}
& \text { 3D: } \vec{j}=\rho \vec{v} \\
& \text { 4D: } J=\rho_{0} V=\rho_{0} \gamma(c, \vec{v})=(c \rho, \vec{j}), \quad \text { where } \rho=\rho_{0} \gamma
\end{aligned}
$$

- Continuity equation

$$
\nabla_{4} \cdot J=\left(\frac{1}{c} \frac{\partial}{\partial t},-\nabla\right) \cdot(c \rho, \vec{j})=\frac{\partial \rho}{\partial t}+\nabla \cdot \vec{j}=0
$$

Relativistic Transformation of Potentials

- 4-potential vector: $\Phi=\left(\frac{1}{c} \phi, \vec{A}\right)$
- Lorentz transformation:

$$
\begin{aligned}
& \left(\begin{array}{c}
\frac{1}{c} \phi^{\prime} \\
A_{x}^{\prime} \\
A_{y}^{\prime} \\
A_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\frac{\gamma v}{c} & 0 & 0 \\
-\frac{\gamma v}{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\frac{1}{c} \phi \\
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right) \\
& \Longrightarrow \quad \begin{array}{l}
\phi^{\prime}=\gamma\left(\phi-v A_{x}\right) \\
A_{x}^{\prime}=\gamma\left(A_{x}-\frac{v \phi}{c^{2}}\right),
\end{array} A_{y}^{\prime}=A_{y}, \quad A_{z}^{\prime}=A_{z}
\end{aligned}
$$

Relativistic Transformation of Fields

$$
\begin{aligned}
\vec{B}^{\prime}=\nabla^{\prime} \wedge \vec{A}^{\prime} \Longrightarrow B_{z}^{\prime} & =\frac{\partial A_{y}^{\prime}}{\partial x^{\prime}}-\frac{\partial A_{x}^{\prime}}{\partial y^{\prime}} \\
& =\frac{\partial A_{y}}{\partial x} \frac{\partial x}{\partial x^{\prime}}+\frac{\partial A_{y}}{\partial t} \frac{\partial t}{\partial x^{\prime}}-\gamma \frac{\partial}{\partial y}\left(A_{x}-\frac{v \phi}{c^{2}}\right) \\
\begin{array}{l}
t=\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right) \\
x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y=y^{\prime}, z=z^{\prime}
\end{array} & =\gamma\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}+\frac{v}{c^{2}}\left(\frac{\partial A_{y}}{\partial t}+\frac{\partial \phi}{\partial y}\right)\right) \\
& =\gamma\left(B_{z}-\frac{v}{c^{2}} E_{y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{B}_{\|}^{\prime}=\vec{B}_{\|}, \quad \vec{B}_{\perp}^{\prime}=\gamma\left(\vec{B}_{\perp}-\frac{\vec{v} \wedge \vec{E}}{c^{2}}\right) \\
& \vec{E}_{\|}^{\prime}=\vec{E}_{\|}, \quad \vec{E}_{\perp}^{\prime}=\gamma\left(\vec{E}_{\perp}+\vec{v} \wedge \vec{B}\right)
\end{aligned}
$$

Example: E/M Field of a Single Particle

A charged particle moves along the x-axis of a frame F. What fields does an observer P see?

P has $0=x_{p}=\gamma\left(x_{p}^{\prime}+v t^{\prime}\right)$ so $x_{p}^{\prime}=-v t^{\prime}$ and $z_{p}^{\prime}=z_{p}=b$
Hence $\vec{x}_{p}^{\prime}=\left(-v t^{\prime}, 0, b\right)$, so $\left|\vec{x}_{p}^{\prime}\right| \equiv r^{\prime}=\sqrt{b^{2}+v^{2} t^{\prime 2}}$,
where $t^{\prime}=\gamma\left(t-\frac{v x_{p}}{c^{2}}\right)=\gamma t$.

In the frame of the particle F^{\prime}, the fields are purely electrostatic, so

$$
\left.\begin{array}{c}
\vec{B}=0, \quad \vec{E}=\frac{q}{4 \pi \epsilon_{0} r^{\prime 3}} \vec{x}_{P}^{\prime} \\
\Longrightarrow \quad E_{x}^{\prime}=-\frac{q v t^{\prime}}{4 \pi \epsilon_{0} r^{\prime 3}}, E_{y}^{\prime}=0, E_{z}^{\prime}=\frac{q b}{4 \pi \epsilon_{0} r^{\prime 3}} \\
\vec{E}_{\|}=\vec{E}_{\|}^{\prime} \\
\vec{E}_{\perp}^{\prime}=\gamma\left(\vec{E}_{\perp}^{\prime}-\vec{v} \wedge \vec{B}^{\prime}\right)
\end{array}\right\} \Longrightarrow \begin{aligned}
& E_{x}=E_{x}^{\prime}=-\frac{q \gamma v t}{4 \pi \epsilon_{0}\left(b^{2}+\gamma^{2} v^{2} t^{2}\right)^{3 / 2}} \\
& E_{y}=0 \\
& E_{z}=\gamma E_{z}^{\prime}=\frac{q \gamma b}{4 \pi \epsilon_{0}\left(b^{2}+\gamma^{2} v^{2} t^{2}\right)^{3 / 2}}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\vec{B}_{\|} & =\vec{B}_{\|}^{\prime} \\
\vec{B}_{\perp} & =\gamma\left(\vec{B}_{\perp}^{\prime}+\frac{\vec{v} \wedge \vec{E}^{\prime}}{c^{2}}\right)
\end{array}\right\} \Longrightarrow\left\{\begin{aligned}
B_{x} & =B_{z}=0 \\
B_{y} & =-\frac{\gamma v}{c^{2}} E_{z}^{\prime}=-\frac{v}{c^{2}} E_{z} \\
& =-\frac{\mu_{0} q \gamma v b}{4 \pi\left(b^{2}+\gamma^{2} v^{2} t^{2}\right)^{3 / 2}}
\end{aligned}\right.
$$

Note that in the non-relativistic limit $\gamma \approx 1$,

$$
\vec{B} \approx \frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \wedge \vec{r}}{r^{3}}
$$

restoring the Biot-Savart law.

Electromagnetic Energy

- Rate of doing work on unit volume of a system is

$$
-\vec{v} \cdot \vec{f}=-\vec{v} \cdot(\rho \vec{E}+\vec{j} \wedge \vec{B})=-\rho \vec{v} \cdot \vec{E}=-\vec{j} \cdot \vec{E}
$$

- Substitute for \vec{j} from Maxwell's equations and re-arrange:

$$
\begin{aligned}
-\vec{j} \cdot \vec{E} & =-\left(\nabla \wedge \vec{H}-\frac{\partial \vec{D}}{\partial t}\right) \cdot \vec{E} \\
& =\nabla \cdot \vec{E} \wedge \vec{H}-\vec{H} \cdot \nabla \wedge \vec{E}+\vec{E} \cdot \frac{\partial \vec{D}}{\partial t} \\
& =\nabla \cdot \vec{S}+\vec{H} \cdot \frac{\partial \vec{B}}{\partial t}+\vec{E} \cdot \frac{\partial \vec{D}}{\partial t} \quad \text { where } \quad \vec{S}=\vec{E} \wedge \vec{H}
\end{aligned}
$$

- For linear, non-dispersive media where $\vec{B}=\mu \vec{H}, \vec{D}=\epsilon \vec{E}$

$$
-\vec{j} \cdot \vec{E}=\nabla \cdot \vec{S}+\frac{\partial}{\partial t}\left\{\frac{1}{2}(\vec{E} \cdot \vec{D}+\vec{B} \cdot \vec{H})\right\} \quad \text { Poynting vector }
$$

Energy Conservation

$$
-\vec{j} \cdot \vec{E}=\frac{\partial}{\partial t}\left\{\frac{1}{2}(\vec{E} \cdot \vec{D}+\vec{B} \cdot \vec{H})\right\}+\nabla \cdot \vec{S}
$$

- Integrated over a volume, this represents an energy conservation law:
- the rate of doing work on a system equals the rate of increase of stored electromagnetic energy+ rate of energy flow across boundary.

$$
\begin{array}{r}
\frac{\mathrm{d} W}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t} \iiint \frac{1}{2}(\vec{E} \cdot \vec{D}+\vec{B} \cdot \vec{H}) \mathrm{d} V+\iint \vec{E} \wedge \vec{H} \cdot \mathrm{~d} \vec{S} \\
\begin{array}{c}
\text { electric + magnetic } \\
\text { energy densities of } \\
\text { the fields }
\end{array} \\
\begin{array}{c}
\text { Poynting vector gives } \\
\text { flux of e/m energy } \\
\text { across boundaries }
\end{array} \\
\hline
\end{array}
$$

Review of Waves

- 1D wave equation is $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}$ with general solution

$$
u(x, t)=f(v t-x)+g(v t+x)
$$

- Simple plane wave:

1D: $\quad \sin (\omega t-k x) \quad 3 \mathrm{D}: \quad \sin (\omega t-\vec{k} \cdot \vec{x})$

- 3D wave equation:

$$
\nabla^{2} \vec{u}=\frac{1}{v^{2}} \frac{\partial^{2} \vec{u}}{\partial t^{2}}
$$

Wavelength is $\lambda=\frac{2 \pi}{|\vec{k}|}$
Frequency is $\quad \nu=\frac{\omega}{2 \pi}$

Phase and Group Velocities

Time $\mathrm{t}+\Delta \mathrm{t}$

Plane wave $\sin (\omega t-k x)$ has constant phase $\omega t-k x=\frac{1}{2} \pi$ at peaks

$$
\begin{aligned}
& \omega \Delta t-k \Delta x=0 \\
\Longleftrightarrow & v_{p}=\frac{\Delta x}{\Delta t}=\frac{\omega}{k}
\end{aligned}
$$

$$
\int_{-\infty}^{\infty} A(k) \mathrm{e}^{\mathrm{i}[\omega(k) t-k x]} \mathrm{d} k
$$

Superposition of plane waves. While shape is relatively undistorted, pulse travels with the Group Velocity

$$
v_{g}=\frac{d \omega}{d k}
$$

Electromagnetic waves

- Maxwell's equations predict the existence of electromagnetic waves, later discovered by Heinrich Hertz.
- No charges, no currents:

$$
\begin{gathered}
\nabla \wedge(\nabla \wedge \vec{E})=-\nabla \wedge \frac{\partial \vec{B}}{\partial t} \\
=-\frac{\partial}{\partial t}(\nabla \wedge \vec{B}) \\
=-\mu \frac{\partial^{2} \vec{D}}{\partial t^{2}}=-\mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}} \\
\nabla \wedge(\nabla \wedge \vec{E})=\nabla(\nabla \cdot \vec{E})-\nabla^{2} \vec{E} \\
=-\nabla^{2} \vec{E}
\end{gathered}
$$

$$
\begin{array}{rlrl}
\nabla \wedge \vec{H} & =\frac{\partial \vec{D}}{\partial t}, & \nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{D}=0, & \nabla \cdot \vec{B}=0
\end{array}
$$

3D wave equation:

$$
\nabla^{2} \vec{E}=\frac{\partial^{2} \vec{E}}{\partial x^{2}}+\frac{\partial^{2} \vec{E}}{\partial y^{2}}+\frac{\partial^{2} \vec{E}}{\partial z^{2}}=\mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

Similarly for \vec{H}.
Electromagnetic waves travelling with

$$
\text { speed } \frac{1}{\sqrt{\epsilon \mu}}
$$

Nature of Electromagnetic Waves

- A general plane wave with angular frequency ω travelling in the direction of the wave vector \vec{k} has the form

$$
\vec{E}=\vec{E}_{0} e^{i(\omega t-\vec{k} \cdot \vec{x})}, \quad \vec{B}=\vec{B}_{0} e^{i(\omega t-\vec{k} \cdot \vec{x})}
$$

- Phase $\omega t-\vec{k} \cdot \vec{x}=2 \pi \times$ number of waves and so is a Lorentz invariant.
- Apply Maxwell's equations:

$$
\begin{array}{rll}
\nabla & \leftrightarrow & -i \vec{k} \\
\frac{\partial}{\partial t} & \leftrightarrow & i \omega
\end{array}
$$

$$
\begin{aligned}
\nabla \cdot \vec{E}=0=\nabla \cdot \vec{B} & \longleftrightarrow \vec{k} \cdot \vec{E}=0=\vec{k} \cdot \vec{B} \\
\nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \longleftrightarrow \vec{k} \wedge \vec{E}=\omega \vec{B}
\end{aligned}
$$

- Waves are transverse to the direction of propagation; \vec{E}, \vec{B} and \vec{k} are mutually perpendicular

Plane Electromagnetic Wave

Electromagnetic waves transport energy through empty space, stored in the propagating electric and magnetic fields.

Magnetic field variation is perpendicular to electric field and direction of propagation

Electric field

 variationA single-frequency electromagnetic wave exhibits a sinusoidal variation of electric and magnetic fields in space.

Plane Electromagnetic Waves

$\nabla \wedge \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t} \Longleftrightarrow \vec{k} \wedge \vec{B}=-\frac{\omega}{c^{2}} \vec{E}$
Combined with $\quad \vec{k} \wedge \vec{E}=\omega \vec{B} \quad \Longrightarrow \frac{|\vec{E}|}{|\vec{B}|}=\frac{\omega}{k}=\frac{k c^{2}}{\omega}$

$$
\Longrightarrow \text { speed of electromagnetic waves in vacuum is } \frac{\omega}{k}=c
$$

Wavelength $\lambda=\frac{2 \pi}{|\vec{k}|}$
Frequency $\nu=\frac{\omega}{2 \pi}$

Reminder: The fact that $\omega t-\vec{k} \cdot \vec{x}$ is an invariant tells us that

$$
\Lambda=\left(\frac{\omega}{c}, \vec{k}\right)
$$

is a Lorentz 4 -vector, the 4 -Frequency vector. Deduce frequency transforms as

$$
\omega^{\prime}=\gamma(\omega-\vec{v} \cdot \vec{k})=\omega \sqrt{\frac{c-v}{c+v}}
$$

Waves in a Conducting Medium

$$
\vec{E}=\vec{E}_{0} e^{i(\omega t-\vec{k} \cdot \vec{x})}, \quad \vec{B}=\vec{B}_{0} e^{i(\omega t-\vec{k} \cdot \vec{x})}
$$

- (Ohm's Law) For a medium of conductivity $\sigma, \quad \vec{j}=\sigma \vec{E}$
- Modified Maxwell:

$$
\nabla \wedge \vec{H}=\vec{j}+\epsilon \frac{\partial \vec{E}}{\partial t}=\sigma \vec{E}+\epsilon \frac{\partial \vec{E}}{\partial t}
$$

- Put $D=\frac{\sigma}{\omega \epsilon}$ Dissipation

$$
-i \vec{k} \wedge \vec{H}=\sigma \vec{E}+i \omega \epsilon \vec{E}
$$ factor

$$
\begin{aligned}
& \text { Copper: } \quad \sigma=5.8 \times 10^{7}, \varepsilon=\varepsilon_{0} \Rightarrow D=10^{12} \\
& \text { Teflon : } \quad \sigma=3 \times 10^{-8}, \varepsilon=2.1 \varepsilon_{0} \Rightarrow D=2.57 \times 10^{-4}
\end{aligned}
$$

Attenuation in a Good Conductor

$$
-i \vec{k} \wedge \vec{H}=\sigma \vec{E}+i \omega \epsilon \vec{E} \Longleftrightarrow \vec{k} \wedge \vec{H}=i \sigma \vec{E}-\omega \epsilon \vec{E}=(i \sigma-\omega \epsilon) \vec{E}
$$

Combine with

$$
\nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t} \Longrightarrow \vec{k} \wedge \vec{E}=\omega \mu \vec{H}
$$

$\Longrightarrow \quad \vec{k} \wedge(\vec{k} \wedge \vec{E})=\omega \mu \vec{k} \wedge \vec{H}=\omega \mu(i \sigma-\omega \epsilon) \vec{E}$
$\Longrightarrow \quad(\vec{k} \cdot \vec{E}) \vec{k}-k^{2} \vec{E}=\omega \mu(i \sigma-\omega \epsilon) \vec{E}$
$\Longrightarrow \quad k^{2}=\omega \mu(-i \sigma+\omega \epsilon)$ since $\vec{k} \cdot \vec{E}=0$

For a good conductor, $D \gg 1, \sigma \gg \omega \epsilon, k^{2} \approx-i \omega \mu \sigma$
$\Longrightarrow k \approx \sqrt{\frac{\omega \mu \sigma}{2}}(1-i)=\frac{1}{\delta}(1-i)$ where $\delta=\sqrt{\frac{2}{\omega \mu \sigma}}$ is the skin-depth
Wave-form is: $\quad e^{i(\omega t-k x)}=e^{i(\omega t-(1-i) x / \delta)}=e^{-x / \delta} \mathrm{e}^{i(\omega t-x / \delta)}$

Charge Density in a Conducting Material

- Inside a conductor (Ohm's law)

$$
\vec{j}=\sigma \vec{E}
$$

- Continuity equation is

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot \vec{j}=0 & \Longleftrightarrow \frac{\partial \rho}{\partial t}+\sigma \nabla \cdot \vec{E}=0 \\
& \Longleftrightarrow \frac{\partial \rho}{\partial t}+\frac{\sigma}{\epsilon} \rho=0
\end{aligned}
$$

- Solution is

$$
\rho=\rho_{0} e^{-\sigma t / \epsilon}
$$

- Charge density decays exponentially with time. For a very good conductor, charge flows instantly to the surface to form a surface current density and (for time varying fields) a surface current. Inside a perfect conductor:

$$
(\sigma \rightarrow \infty) \quad \vec{E}=\vec{H}=0
$$

A Uniform Perfectly Conducting Guide

Hollow metallic cylinder with perfectly conducting boundary surfaces

Maxwell's equations with time dependence $e^{i \omega t}$ are:

$$
\underbrace{\left.\begin{array}{c}
\nabla \wedge \vec{E}=-\frac{\partial \vec{B}}{\partial t}=-i \omega \mu \vec{H} \\
\nabla \wedge \vec{H}=\frac{\partial \vec{D}}{\partial t}=i \omega \epsilon \vec{E}
\end{array}\right\} \Longrightarrow \begin{array}{c}
\nabla^{2} \vec{E}=\nabla(\nabla \cdot \vec{E})-\nabla \wedge \nabla \wedge \vec{E} \\
=i \omega \mu \nabla \wedge \vec{H} \\
=-\omega^{2} \epsilon \mu \vec{E}
\end{array}}_{\left(\nabla^{2}+\omega^{2} \epsilon \mu\right)\left\{\begin{array}{c}
\vec{E} \\
\vec{H}
\end{array}\right\}=0 \text { Helmholtz Equation }}
$$

Assume $\vec{E}(x, y, z, t)=\vec{E}(x, y) e^{(i \omega t-\gamma z)}$

$$
\vec{H}(x, y, z, t)=\vec{H}(x, y) e^{(i \omega t-\gamma z)}
$$

$$
\text { Then }\left[\nabla_{t}^{2}+\left(\omega^{2} \epsilon \mu+\gamma^{2}\right)\right]\left\{\begin{array}{c}
\vec{E} \\
\vec{H}
\end{array}\right\}=0
$$

γ is the propagation constant
Can solve for the fields completely in terms of E_{z} and H_{z}

A simple model: "Parallel Plate Waveguide"

Cut-off Frequency, ω_{c}

$$
\gamma=\frac{n \pi}{a} \sqrt{1-\left(\frac{\omega}{\omega_{c}}\right)^{2}}, \quad E=\sin \frac{n \pi x}{a} e^{i \omega t-\gamma z}, \quad \omega_{c}=\frac{n \pi}{a \sqrt{\epsilon \mu}}
$$

- $\omega<\omega_{\mathrm{c}}$ gives real solution for γ, so attenuation only. No wave propagates: cut-off modes.
- $\omega>\omega_{c}$ gives purely imaginary solution for γ, and a wave propagates without attenuation. $\gamma=i k, \quad k=\sqrt{\epsilon \mu}\left(\omega^{2}-\omega_{c}^{2}\right)^{\frac{1}{2}}=\omega \sqrt{\epsilon \mu}\left(1-\frac{\omega_{c}^{2}}{\omega^{2}}\right)^{\frac{1}{2}}$
- For a given frequency ω only a finite number of modes can propagate.

$\omega>\omega_{c}=\frac{n \pi}{a \sqrt{\epsilon \mu}} \quad \Longrightarrow n<\frac{a \omega}{\pi} \sqrt{\epsilon \mu}$

For a given frequency, convenient to choose a so that only mode $n=1$ propagates.

Phase and Group Velocities

- Wave number

$$
k=\sqrt{\epsilon \mu}\left(\omega^{2}-\omega_{c}^{2}\right)^{\frac{1}{2}}<\omega \sqrt{\epsilon \mu}
$$

- Wavelength

$$
\lambda=\frac{2 \pi}{k}>\frac{2 \pi}{\omega \sqrt{\epsilon \mu}}
$$

- free-space wavelength
- Phase velocity

$$
v_{p}=\frac{\omega}{k}>\frac{1}{\sqrt{\epsilon \mu}} \quad, \begin{aligned}
& \text { larger than free-space } \\
& \text { velocity }
\end{aligned}
$$

- Group velocity

$$
\begin{aligned}
& k^{2}=\epsilon \mu\left(\omega^{2}-\omega_{c}^{2}\right) \Longrightarrow v_{g}=\frac{\mathrm{d} \omega}{\mathrm{~d} k}=\frac{k}{\omega \epsilon \mu}<\frac{1}{\sqrt{\epsilon \mu}} \\
& \bullet \text { smaller than free- } \\
& \text { space velocity }
\end{aligned}
$$

Calculation of Wave Properties

- If $a=3 \mathrm{~cm}$, cut-off frequency of lowest order mode is

$$
f_{c}=\frac{\omega_{c}}{2 \pi}=\frac{1}{2 a \sqrt{\epsilon \mu}} \approx \frac{3 \times 10^{8}}{2 \times 0.03} \approx 5 \mathrm{GHz} \quad\left(\omega_{c}=\frac{n \pi}{a \sqrt{\epsilon \mu}}\right)
$$

- At 7 GHz , only the $\mathrm{n}=1$ mode propagates and

$$
\begin{aligned}
& k=\sqrt{\epsilon \mu}\left(\omega^{2}-\omega_{c}^{2}\right)^{\frac{1}{2}} \approx 2 \pi\left(7^{2}-5^{2}\right)^{\frac{1}{2}} \times 10^{9} / 3 \times 10^{8}=103 \mathrm{~m}^{-1} \\
& \lambda=\frac{2 \pi}{k} \approx 6 \mathrm{~cm} \\
& v_{p}=\frac{\omega}{k}=4.3 \times 10^{8} \mathrm{~ms}^{-1}>c \\
& v_{g}=\frac{k}{\omega \epsilon \mu}=2.1 \times 10^{8} \mathrm{~ms}^{-1}<c
\end{aligned}
$$

Flow of EM Energy along the Guide

- Fields $\left(\omega>\omega_{c}\right)$ are:

$$
\begin{gathered}
E_{x}=E_{z}=0, \quad E_{y}=A \sin \frac{n \pi x}{a} \cos (\omega t-k z) \\
H_{x}=-\frac{k}{\omega \mu} E_{y}, \quad H_{y}=0, \quad H_{z}=-A \frac{n \pi}{a \omega \mu} \cos \frac{n \pi x}{a} \sin (\omega t-k z)
\end{gathered}
$$

- Time averaged energies: $\quad\left\langle\sin ^{2} \omega t\right\rangle=\left\langle\cos ^{2} \omega t\right\rangle=\frac{1}{2}, \quad\langle\sin \omega t \cos \omega t\rangle=0$ Electric energy: $\quad W_{e}=\frac{1}{4} \epsilon \int_{0}^{a}|\vec{E}|^{2} \mathrm{~d} x=\frac{1}{8} \epsilon A^{2} a$
Magnetic energy: $\quad W_{m}=\frac{1}{4} \mu \int_{0}^{a}|\vec{H}|^{2} \mathrm{~d} x=\frac{1}{8} \mu A^{2} a\left\{\left(\frac{n \pi}{a \omega \mu}\right)^{2}+\left(\frac{k}{\omega \mu}\right)^{2}\right\}$

$$
=W_{e} \quad \text { since } k^{2}+\frac{n^{2} \pi^{2}}{a^{2}}=\omega^{2} \epsilon \mu
$$

Flow of E/M Energy

- Poynting vector:

$$
\vec{S}=\vec{E} \wedge \vec{H}=\left(E_{y} H_{z}, 0,-E_{y} H_{x}\right)
$$

- Time averaged: $\quad\langle\vec{S}\rangle=\frac{1}{2}(0,0,1) \frac{k A^{2}}{\omega \mu} \sin ^{2} \frac{n \pi x}{a}$
- Integrate over x : $\left\langle S_{z}\right\rangle=\frac{1}{4} \frac{k A^{2}}{\omega \mu} a$ Total e/m energy density
- So energy is transported at a rate:

$$
W=\frac{1}{4} \epsilon A^{2} a
$$

$$
\frac{\left\langle S_{z}\right\rangle}{W_{e}+W_{m}}=\frac{k}{\omega \epsilon \mu}=v_{g}
$$

Electromagnetic energy is transported down the waveguide with the group velocity

