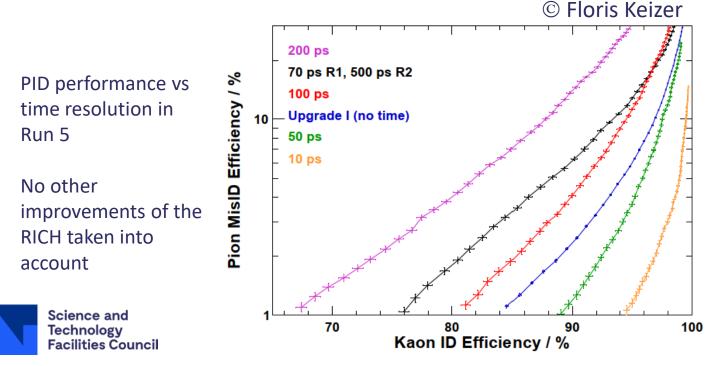


SiPM R&D for LHCb

Antonis Papanestis, <u>Stefania Ricciardi,</u> Costantinos Vrahas

PPD R&D showcase 27 July 2022



PID in LHCb upgrade 2 (Run5 and Run6)

Main challenge: operate RICH at luminosity x7 that of Run3-4, up to 1.5×10^{34} cm⁻²s⁻¹

Requirements for photon detectors to keep PID capabilities at current level:

- Improvement in space (<1mm) and time resolution (<100ps)</p>
- ➤ High radiation tolerance
- ➢ High efficiency and high readout rate capabilities

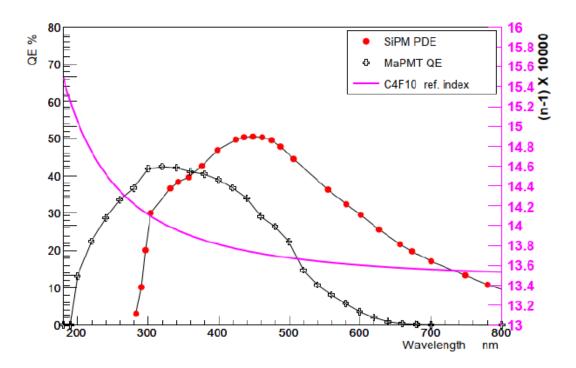
LHCb RICH 1

Position sensitive photon detectors

	MaPMT	SiPM	MCP-based solutions
Spatial resolution	×	\checkmark	\checkmark \checkmark
Time resolution	\checkmark	\checkmark	\checkmark \checkmark
Radiation hardness	\checkmark	××	\checkmark
Low dark counts	\checkmark	×	\checkmark
Magnetic field immunity	×	\checkmark	\checkmark
Low cost			×
Gain ageing		\checkmark	××
Saturation current	×	\checkmark	× ×
Low voltage operation	×	\checkmark	×

from https://rich2018.org/indico/event/1/contributions/10/

no obvious solution available off the shelf: R&D in collaboration with industrial partners for custom solutions needed


Stefania Ricciardi

SiPMs for RICH in LHCb Upgrade 2

Promising technology:

High PDE shifted to red to reduce chromatic dispersion (thus improving angular resolution)
 Small pixel size (1x1mm) will provide high granularity and reduce photon occupancy/pixel
 Good time-resolution of ~100 ps/photon further reduces effective occupancy and mitigates combinatorial background

➤Insensitive to magnetic fields (removal of magnetic shield frees up space for neutron shield and cooling)

Main challenge:

➢ High DCR at room temperature. DCR must be kept to a few 100kHz/mm² to be readout at 40 MHz. Challenging after irradiation. Necessity of cooling, shielding during data-taking and annihilation during shutdown periods

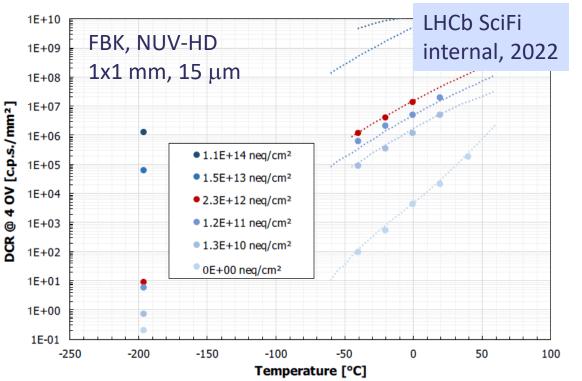
Science and Technology Facilities Council

SiPM radiation hardness

At room temperature DCR makes single photon detection impossible already at 10¹¹ cm⁻² 1-MeVequivalent neutron fluence [LHCb U2 RICH range up to 10¹³ 1-MeV n_{eq} cm⁻²]

Previous studies for various SenSL and Hamamatsu SiPMs (M. Calvi et al., NIM A, 922 (2019) 243)

Irradiation damage induce strong dependence of DCR on T : DCR below 1 kHz/mm was achieved with SiPM irradiated up to 10¹⁴ n/cm², annealed for days to 175°C and cooled to LN2 temperatures


Using improved annealing techniques and cooling at -40°C, it may be possible to operate RICh detector beyond a fluence of 10^{12} 1-MeV n_{eq}/cm² (Korpar and Krizan, <u>NIM, 970, 163804, 2020</u>)

Key questions:

Which temperature could we keep the SiPMs at? How long will we be able to operate the RICH before replacing them?

07/07/2022

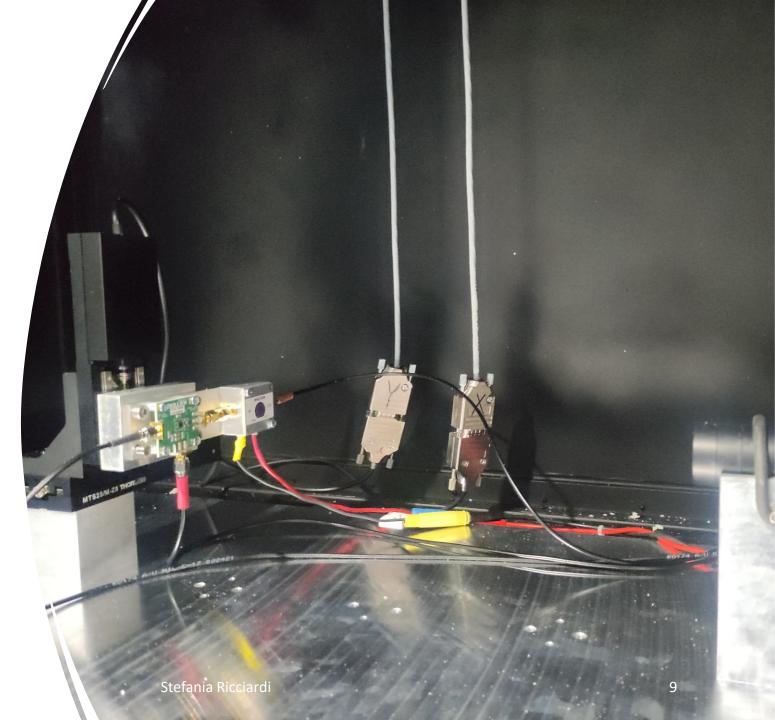
5

SiPM R&D programme at RAL

- Goal: radiation hardness evaluation of different SiPMs types
- Main measurements:
 - breakdown voltage with I_V curves vs T
 - dark current rate and correlated noise vs T
 - PDE, gain vs T
 - time-resolution vs T
 - Useful reference: Klanner, 2019
- Milestones
 - 1. Characterisation of Ketek 3x3mm SiPM at room temperature
 - 2. SiPM single-cell cooling system ready and tested
 - 3. SiPMs readout ready
 - 4. Measurements of different kind of SiPMs (Hamamatsu, FBK) at room temperature
 - 5. Measurements of cooled devices (down to -40°C)
 - 6. Presentation of results before irradiation
 - 7. Irradiation campaign (various fluences)
 - 8. Tests after irradiation
 - 9. Publication of results
- Deliverables
 - Assessment of suitability and optimal operational temperature of various SiPMs for LHCb Upgrade 2
 - Collaboration with industries (investigate changes to SiPMs internal design to improve radiation hardness)

Preliminary schedule

	Jul-Sept 2022	Oct-Dec 2022	Jan-March 2023	Apr-Jun 2023	July-Sept 2023
1. Test Ketek SiPM at room T					
2. Develop single-cell SiPM cooling system					
3. Develop SiPM readout					
4. Test Hamamatsu SiPMs at room temperature					
5. Test of SiPMs vs T					
6. Presentation of results before irradiation		December			
7. Irradiation			January	Provision for second irradiation campaign	
8. Tests after irradiation					
9. Publication					


Experimental setup

- SiPM and light sources confined in a light-tight thermally-insulated enclosure (green box)
- External power supply for pre-amp, <u>Agilent E3648A</u> (0-20V, 2.5A)
- External power supplies for pulsed diode <u>PicoQuant PDL200-B</u> and laser
- Oscilloscope, <u>LeCroy WavePro725zi</u>, 2.5GHz, 40Gs/s
- Desktop (Windows with LabView installed)

Experimental setup/2

- Evaluation kit including:
 - Ketek 3x3mm SiPM, preamplifier, connection to external bias power supply
- Stepper motors control SiPM x-y position with 2µm accuracy
 - new Thorlab <u>x-y stage</u>
- Light sources:
 - Pulsed diode
 - Laser (420nm, 44-70 ps pulse width, <u>PicoQuant LDH-D-C-420</u>)

Experimental setup/3

In addition:

- SiPMs to be tested
 - 5 Hamamatsu <u>S13360-1350PE</u> (surface mount, 1.3x1.3mm) Delivered July 5
 - FBK off-shell and not (collaboration with FBK established by LHCb)
 - Other types/sizes?
- CAEN wide-band preamplifier <u>A1423B</u> Delivered June 20
- Keithley SMU 2450 Ordered in May, long lead time but a demo unit on loan delivered on July 6
- SiPM cooling box components:
 - Peltier cooler (double-stage)
 - Heat sink
 - Fan
 - Insulating material, optical acrylic window, pipes and connectors
- Dry-air/dry-ice
- Humidity and temperature sensors

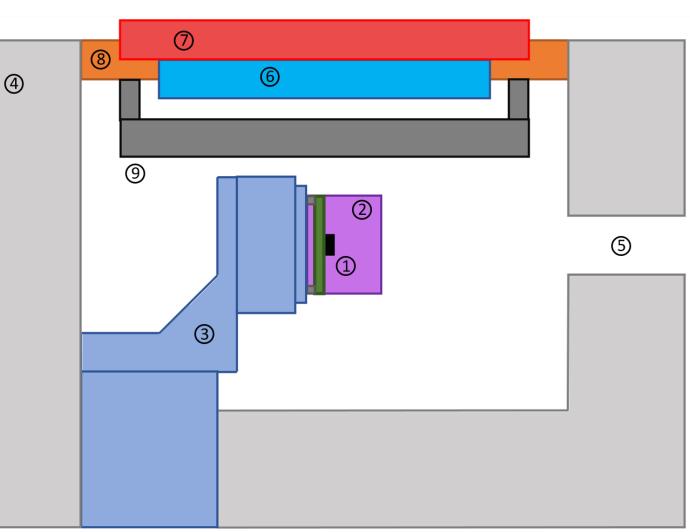
07/07/2022

Cooling system initial design

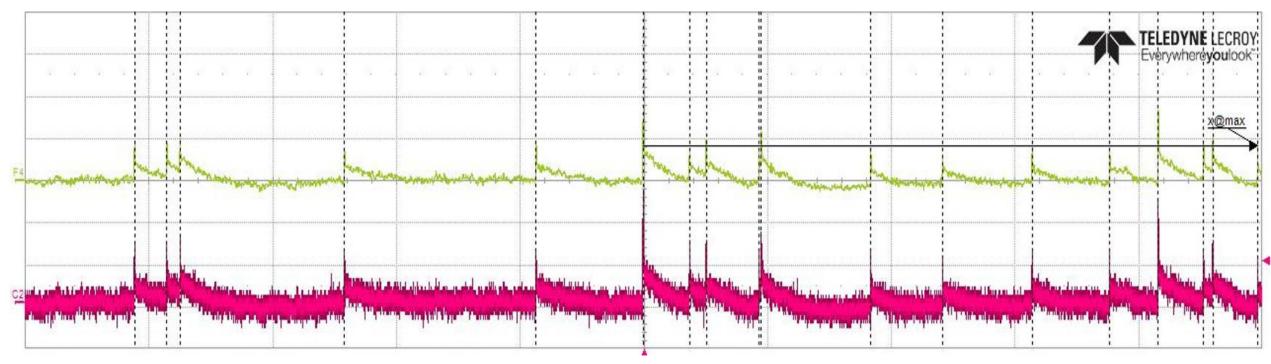
Costantinos Vrahas

Initial design

- Low cost and simple
- Conductive cooling not compatible with Ketek testing kit → convective cooling
- Most components can be reused for a conductive cooling design if necessary


Apparatus under test

- SiPM (1) is mounted on a PCB providing connections to bias voltage and to preamp. (2)
- (1), (2) are secured to testing mount (3)


Cooling box

- Apparatus is enclosed in a box made of insulating material (4) with an acrylic window opening along the SiPM axis (5)
- Cooling provided by a double-stage peltier (6) connected to a heat exchanger (7), embedded in the upper panel (8)
- A fan (9) directs cold dry air on the SiPM
- Electric wires are passed through openings in the panel

Side view

Costantinos Vrahas

Dark counts of Ketek SiPM

- Oscilloscope screenshot: Time scale at 500 ns, Voltage scale at 5 mV
- Noise reduction (green) applied to analogue signal from preamp (red)
- Peaks found by detecting rising edge of signal, 3 mV threshold
- Good detection accuracy, number of peaks counted in 50x5 µs regions
- Measured DCR at room temperature: 2.9 ± 0.8 MHz (preliminary!)
- Offline analysis will be performed to improve measurement accuracy and reproducibility

07/07/2022

Stefania Ricciardi

Funding

- LHCb upgrade 2 R&D funded for 3 years by STFC until September 2023
- Total WG1 (charged hadrons PID) £381k, shared among all participating institutes (Bristol, Cambridge, Edinburgh, ICL, Oxford, RAL, Warwick)
 - about £10k consumables to RAL, already spent

innabit today.

- RAL only institute involved in SiPM R&D in the UK currently
- £4.8M rewarded to LHCb from UKRI Infrastructure Fund for next 3 years starting FY 2024/25
 https://www.ukri.org/what-we-offer/creating-world-

1 2024/20		https://www.ukri.org/what-we-offer/creating-world-class-		
	Large Hadron Collider beauty (LHCb) 2030+	research-and-innovation-infrastructure/funded-infrastructur		
	Funding	projects/		
	£1.1 million over the next three years. £49.4 million including future funding years.	on from the Infrastructure Fund in total		
	Project start date: financial year 2024 to 2025.			
	About the project			
ncil	The Large Hadron Collider (LHC) at CERN is the v particle collider, used to increase our understand universe.			
	The Large Hadron Collider beauty (LHCb) experim happened after the Big Bang that allowed matter	12		

07/07/2022

SiPM R&D starting in earnest now!

Many thanks to all PPD people who have helped/advised us: Atanu, Gary, Giulio, John, Matt, Tai-Hua, IT group and others

SiPM R&D outlook

- Radiation-hard internal designs of the sensor will continue in close collaboration with industrial partners, and other LHCb groups (CERN, Italy, Slovenia groups also involved).
- Micro-lensing: A light collection system which demagnifies the effective optical pixel into the real pixel area can reduce the overall dark-count rate, the surface for radiation damage and sensor capacitance.
- Timing: time gate in the front-end electronics can reduce the contribution of dark counts to the bandwidth and event reconstruction.
- Cryogenic temperature: studies could be extended for operation of SiPMs at cryogenic temperatures
- Cooling system for the photo-detector planes in the RICH will have to be designed