

Birmingham R&D interests and facilities

P. Allport, A. Chisholm, L. Gonella, K. Krizka, C. Lazzeroni, P. Newman, N. Watson

Future UK Silicon Vertex & Tracker R&D Workshop, 7 – 8 September 2022

R&D interests in silicon technologies

□ 4D trackers

- Generic UFSD sensor R&D
 - Small pitch UFSD (Trench isolated, resistive)
- TimeSpot project, full module development
 - □ Stitched 3D sensor, connection to ASIC, module electrical interface
- Readout systems for 4D trackers
- Development of UFSD fabrication capability for UK industrial partners

MAPS

- MALTA sensor development
 - Process modifications for radiation hardness, asynchronous readout architecture for low power
- 65 nm MAPS developments
 - Technology exploration, wafer-scale stitched sensors, low-power/high-resolution and fast/rad hard sensor
- Reconfigurable MAPS for outer tracking, pre-shower and EM calorimeter
- □ 3D integration
 - Technology exploration and prototype 3D stack for particle detection

Birmingham Instrumentation Laboratory - BILPA

- The Birmingham Instrumentation Laboratory for Particle Physics and Applications (BILPA) has been established in 2016 through a University funded initiative aimed at consolidating and expanding its capabilities in semiconductor detector systems R&D and production
- The laboratory consists of 200 m² of open-plan cleanroom space (ISO5 and ISO7) and is designed to accommodate work in three main areas
 - Detector development for the High-Luminosity upgrade of the LHC (HL-LHC)
 - Generic R&D on semiconductor detectors for future international collider experiments
 - Medical application of particle physics technology
- This facility is complemented by a high intensity proton irradiation line and a low intensity sensor testing line at the Birmingham MC40 cyclotron + upcoming neutron source (ADNIF facility)

BILPA equipment

- □ ISO5 Detector assembly
 - Cascade Tesla Semi-automatic Probe station
 - Cascade Microtech REL 4800 Manual Probe Station
 - Tresky T-3002-M manual die bonder
 - Two Hesse & Knipps BondJet 820 automatic wire bonders
 - Dima Dispense Master
 - Dage 4000 Multipurpose Bondtester
 - OGP SmartScope Flash 500
 - Keyence digital microscope
- ISO7 Detector testing
 - Particulars, Advanced Measurement Systems, scanning Transient Current Technique (TCT) apparatus
 - ALiBaVa setup
 - WeissTechnik L C/150/70/3 Climate Test Chamber

Current BILPA R&D programme

□ ATLAS Inner Tracker (ITk) upgrade at the HL-LHC

- The UK will deliver 50% of the ITk strip barrel (~ 6000 modules)
- Birmingham is one of two UK hybrid production sites, and one of five UK module production sites
- The Birmingham irradiation facility is the only international proton irradiation site for regular strip sensor QA
- Generic R&D on semiconductor detectors for future international collider experiments
 - Reconfigurable MAPS in radiation-hard Technology for outer outer tracking, preshower and EM calorimeter at an FCC facility (DECAL sensor)
 - R&D on CMOS sensors: MALTA & 65 nm stitched CMOS sensor
 - Precision Central Silicon Tracking & Vertexing for the EIC
 - Development of radiation tolerant Low Gain Avalanche Detectors for fast timing application (Te2v and Micron)
 - RD50 R&D projects for radiation-hard novel silicon technologies (CMOS sensors, TI-LGAD)

Current BILPA R&D programme

- Medical applications
 - OPTIma (Optimising Proton Therapy through Imaging) with University Hospitals Birmingham, Christie Hospital, the Universities of Lincoln and Manchester.
 - "LhARA End station development and instrumentation"
 - STFC+NPL Enhancement of the UK Primary Standard for Absorbed Dose for Proton Radiotherapy with NPL, vivaMOS and STFC CMOS Sensor Design Group
 - DMAPS tracking in pCT and beam profiling (with University of Bonn)
 - Sensors for Hadron Therapy Micro-beam and FLASH
 - ENLIGHT (CERN led hadron therapy consortium)
 - STFC Network+ in Advanced Radiotherapy
 - MonteCarlo tools for medical applications

Birmingham inputs to PPTAP solid state task force

Key technical challenges & technology R&D...

- Large area, low cost silicon detectors
 - Replace strip technology; digital ECAL.
 - MAPS in 65 nm CMOS imaging technology.
 - Innovative technologies for detector assembly, cooling and mechanics.
- ASICs for vertex layers
 - Low power (few 10 mW/cm²), high granularity (down to a few um), radiation hardness (10¹⁸ n_{eq}/cm², 10-100 Grad), high speed links (tens of Gbit/sec).
 - 28 nm CMOS technology.
- 4D tracking
 - Finely segmented silicon sensor with gain (e.g. AC-LGAD).
 - Dedicated ASIC development with optimised power density for high-speed readout (28 nm ASIC).
 - Increased LGAD volume production/throughput capability.

...to be addressed by the UK particle physics community to

- Become a leading contributor to the development of future collider facilities and establish leadership in key aspects of their science programme.
- Develop IP and UK expertise in the design of sensors and ASICs for broad science applications and commercialisation.

Birmingham inputs to PPTAP solid state task force

Supporting strategy

- Coordinated technology R&D roadmap
 - Selected cutting-edge projects, clusters of institutes with complementary skills and infrastructure.
 - Matched to planned UK participation in future particle physics experiments.
 - Identified links with UK industry, potential applications in other scientific fields and opportunities for commercialisation.
- Continuous stream of funding for generic technological R&D
 - sustained funding for R&D that also allows us to build meaningful relationships with industry.
 - Structured to support seeding projects/proof of concepts/feasibility studies and IP development followed by the development of full products for different applications.
- Community engagement, training, skills development
 - Regular review of the strategy in light UK/international/technology developments.
 - Regular workshops involving scientific and industrial partners.
 - PHD scholarships designed around the strategy, complemented by an annual school on detectors.
 - Training for on aspects of commercialisation and IP exploitation.
 - Summer internships for undergraduate students.

