ALICE ITS2 MAPS Detector Construction Experience

Roy Lemmon

UK Project Leader

STFC Daresbury Laboratory and University of Liverpool

on behalf of the ALICE experiment

Science and Technology Facilities Council

ALICE Upgrades in LS2@LHC

Motivation:

High-precision measurements of rare probes at low p_{T}

- Cannot be selected by hardware trigger
- Need to record large minimum-bias data sample
 - Read out all Pb-Pb interactions up to the maximum collision rate of 50 kHz

Goal:

- Pb-Pb integrated luminosity 13 nb⁻¹ (plus pp, pA and O-O data)
 - -> Gain factor 100 in statistics for min bias sample w.r.t. runs 1+2
- Improve vertex reconstruction and tracking capabilities

Strategy:

- new ITS, MFT, FIT, TPC ROC
- update FEE of most detectors
- new integrated Online-Offline system (O²)

ITS2 Design Objectives

- Improve impact parameter resolution by factor ~3 in rφ and factor ~5 in z at p_T = 500 MeV/c
 - Get closer to IP: 39 mm -> 23 mm
 - Reduce material budget: 1.14% X₀ -> 0.35% X₀ (inner layers)
 - Reduce pixel size: 50 x 425 μm² -> ~30 x 30 μm²
- Improve tracking efficiency and p_T resolution at low p_T
 - Increase number of track points: 6 -> 7 layers

- Fast readout
 - Readout of Pb-Pb collisions at 100 kHz (ITS1: 1 kHz) and p-p at 400 kHz

ITS2 pixel chip: ALPIDE

ΙH

Buffering and Interface

continuous

or

external trigger

CMOS Pixel Sensor – Tower Semiconductor 180nm CMOS Imaging Sensor (CIS) Process

ALPIDE Key Features

- In-pixel: Amplification, Discrimination, multi event buffer
- In-matrix zero suppression: priority encoding
- Ultra-low power < 40mW/cm² (< 140mW full chip)
- Detection efficiency > 99%
- Spatial resolution $\sim 5\mu m$
- Low fake-hit rate: << 10⁻⁶/pixel/event (10⁻⁸/pixel/event measured during commissioning)

• Radiation tolerance:

- 270 krad total ionising dose (TID),
- > 1.7 10^{13} 1MeV/n_{eq} non-ionising energy loss (NIEL)
- Same chip used for ITS and Muon Forward Tracker (MFT)

ALPIDE and other developments

ALPIDE: Tower Semiconductor 180nm CMOS Imaging Sensor (CIS) Process

- R&D effort within the ALICE collaboration
 - excellent collaboration with foundry
 - more than 70k chips produced and tested
 - ALICE ITS pioneers large area trackers built of MAPS (ALICE 3)
- in parallel studies to optimise process to reach full depletion and improve time response and radiation hardness up to 10¹⁵ 1MeV/n_{eq} :
 - More details: NIM A871 (2017) https://doi.org/10.1016/j.nima.2017.07.046
 - Now being further pursued: MALTA, CLICpix, FastPix,
 ...

FUTURE: TPSCo 65 nm CMOS Imaging Sensor (CIS) Process

what next? ITS3: all silicon detector

- 2D stitching \rightarrow large surface sensors
- 300 mm wafers \rightarrow 27×9 cm² sensor
- single "chip" equips an ITS3 half-layer
- thinned down to 20-40 μm
 - -> flexible, bent to target radii

ITS2 Layout

ITS2 Inner Barrel

Inner Barrel (IB):

- Three layers
 - Layer0: 12 staves
 - Layer1: 16 staves
 - Layer2: 20 staves
- Hybrid Integrated Circuit (HIC): 9 sensors glued on Al Flexible Printed Circuit (FPC)
- Wirebonds electrically connect FPC to chips
- Stave: a HIC glued to cold plate and space frame
- Sensors read out separately

HIC & stave production:

- Production site: CERN
- 140 staves assembled
- Yield 73%
- **Production completed** and enough for two IB sets.

R. Lemmon

8

ITS2 Outer Barrel

Outer Barrel (OB):

- OB HIC:
 - 7x2 sensors (2 rows) glued on Cu FPC
 - Wirebonds electrically connect FPC to chips
 - Power delivered via 6 cross-cables soldered to the FPC
 - Data and control are transferred through 1 master chip per row
- OB stave:
 - 4x2 HICs (for ML) or 7x2 HICs (for OL) glued to cold plate and space frame
- 54 ML staves (24 + 30) + 90 OL staves (42 + 48)

Outer Barrel Module Production Liverpool

- One of 5 sites: Bari (IT), Liverpool (UK), Pusan (KR), Strasbourg (FR), Wuhan (CN)
- Module Assembly Machine (MAM) designed and manufactured by collaboration for this purpose
- Assembly procedure:
 - Chips are aligned and glued to FPC
 - Wirebonding
 - Functional tests
 - Shipped to stave sites
- 635 modules produced
- Production completed July 2019
- Liverpool detector grade yield 85%
- Developed and carried out metrology procedures
- Developed short curing technique to make 1 more module a day, used by the all production sites

M. Buckland, L. Boynton, A. Chadwick, M. Chartier, N. Clague, G. Contin, J. Iddon, S. Lindsay, M. Poblocki

Outer Barrel Stave Production Daresbury

- Stave institutes: Berkeley (US), Daresbury (UK), Frascati (IT), Nikhef (NL), Turin (IT)
- Coordinate Measuring Machine (CMM) with 2m bed purchased for this purpose
- Assembly procedure:
 - Modules are aligned and glued to cold plate
 - Inter-module connection (soldering)
 - Functional tests
 - Aligned and glued onto space-frame
 - Power bus connection
 - Functional tests
 - Packed and shipped to CERN
- 22 staves assembled
- Stave detector grade yield in Daresbury is 95.5%

G. Markey, T. Lee, A. Hill, M. Borri, M. Buckland, N. Clague, G. Contin, J. Iddon, E. Latham-Taylor, R. Lemmon, J. Liu, M. Poblocki, P. Hindley, G. Morris

On-Surface Commissioning

ITS installation

Outer Barrel Bottom being inserted on the rails inside the TPC

ITS Outer Barrel surrounding the beam pipe, MFT in the back

• Installation challenges

- Precise positioning around the beam pipe (nominal clearance ~ 2 mm)
- Manipulating from 4 m distance
- Difficult to see actual position by eye
- precise mating of top and bottom barrel halves (clearance between adjacent staves ~ 1.2 mm)
- Dry-installation tests on the surface to test and exercise procedures
- Use of 3D scans, surveys and cameras

1.2 mm nominal clearance

OB stave edge clearance when fully mated

ITS Inner Barrel Bottom and Outer Barrel

On-Surface Commissioning results

- Cosmics tracks reconstructed
- IB: fake-hit rate of 10⁻¹⁰ / pixel / event
 - Achieved by masking fraction of 10⁻⁸ pixels
- OB: fake-hit rate of 10⁻⁸ / pixel / event
 - Achieved by masking noisy pixels common to all runs
- Bit-error-free data transmission for several tens of hours at nominal operating conditions
 - Large operational margin in terms of occupancy and readout rate
 - Regular errors for extreme combinations of occupancy and trigger rate lead to negligible inefficiency (~1/s for full IB)

Calibration

The Challenge:

- Online calibration of **12.5 billion channels**
- Threshold scan of full detector: > 50 TB of event data
- Several scans to be run sequentially
 - Threshold tuning (adjust thresholds to target)
 - Threshold scan (measure actual thresholds)

Procedure:

- DCS performs actual scans: configure and trigger test injections
- Scan runs in parallel but independently on all staves
- Distributed analysis on event processing nodes
- full procedure takes less than 30 minutes

Results:

- Scan with online analysis successfully run on full detector
- before tuning: settings used in surface commissioning: detector already fully efficient
- After tuning:
 - Thresholds very stable on all the chips: RMS of threshold distribution per chip <23 e⁻ (compatible with what we had during production)
- ENC noise ~ 5e⁻

RUN 3 readiness

Conclusions

- ITS2 successfully installed and commissioned for LHC RUN3
- Calibration procedure established and tested
- DCS and QC tools ready for data taking
- Detector settings optimized both for pp and PbPb collisions
- RUN3 has already started this month with pp collisions and ITS2 detector has already taken data at 1MHz collision rate

ALICE ITS2 Outer Barrel during insertion tests

BACK UP SLIDES

ITS2 OB HIC Production Summary

INTEGRATED PRODUCTION STEPS

OB HIC production:

- HIC assembly sites: Bari, Liverpool, Pusan/Inha, Strasbourg, Wuhan
- FPC test and preparation sites: Trieste, Catania
- 1692 working HICs needed to build 90 OB staves
- 2679 HICs assembled and 2270 HICs qualified as Detector Grade (DG)
- 2200 HICs distributed to OB stave production sites

OB HIC YIELD Gold/Silver + Bronze + Burnt through + NO Backbias 58.7%+11.1%+5.5%+9.4%

84.7%

Production completed on 25/11/2019

ITS2 OB Stave Production Summary

Stave yield vs time ML OL Yield 100 80 60 ML overall YIELD: 94% 40 OL overall YIELD: 94% 20

Week

OB stave production:

- production sites: Torino, Frascati, Daresbury and Nikhef (for OL), Berkeley (for ML)
- 68 (64 DG) ML staves + 107 (101 DG, including 4 reworked) OL staves assembled

ML production completed in October/2019 OL production completed in December/2019

On-Surface Commissioning – Outer Barrel Efficiency

• [Preliminary study] Efficiency of OB using cosmic tracks

- Restricted to cosmic tracks passing through 10 cm sphere around interaction point for realistic track geometry
- Preliminary cut on chip gaps to restrict region-of-interest to sensitive area
- Measured efficiency well above 99% for all layers

ALICE

Data Preparation: alignment

- Manual pre-alignment concluded with precision of O(100 μm)
- Ongoing: pre-alignment in R, Rf and Z using Millepede
 - currently at O(10 $\mu m)$ for Inner Barrel and O(50 $\mu m)$ for Outer Barrel)
- Next step: fine alignment targeting a precision of a few μm (using Millipede, or AI approaches)

Below: example, Y and Z residuals in L1, before and after alignment with Millepede

ALICE

Power and Readout System Overview

major upgrade

ALICE 2.1: ITS3 all silicon detector

ITS2 Layer 0: X/X0=0.35

ITS3 only silicon: X/X0=0.05

- Goal: improve vertexing at high rate
- Layout: 3 layers, replace ITS Inner Barrel,
 - beam pipe: smaller inner radius (18.2 mm to 16 mm) and reduced thickness (800 μm to 500 $\mu m)$
 - innermost layer: mounted around the beam pipe, radius 18mm (was 22 mm)
- Technology choices:
 - 65 nm CIS of Tower & Partners Semiconductor (TPSCo):
 - larger wafers: 300 mm instead of 200 mm,
 - single "chip" equips an ITS3 half-layer (through stitching technology)
 - 6 sensors in total
 - thinned down to 20-40 μm
 - -> flexible
 - bent to target radii
 - mechanically held by carbon foam ribs with low density and high thermal conductivity

-

Letter of Intent for an ALICE ITS Upgrade in LS3 https://cds.cern.ch/record/2703140

ITS2 Commissioning Work by UK

- Production readout system
 - Developing readout software
 - Writing code for threshold scans on multiple staves (half barrel)
 - Determine the threshold of the pixels then tune for uniformity
- Data Quality Control (QC)
 - Contribute to software development
 - Optimised QC is running
 - Trying to extract noisy pixel addresses through QC results
 - QC parallelization is under development to speed up processing time
 - Moving from inner barrel to outer barrel

Outer Barrel Module Production Liverpool

- Custom designed machine by IBS (NL) built to the project specifications
- So-called Module Assembly Machine (MAM):
 - Automatic chip pick up and placement
 - < 5 μ m alignment precision
 - Automatic chip inspection
- Wirebonding on site

Outer Barrel Module Production Liverpool

ALICE

- Extensive functional and mechanical testing for Quality Assurance (QA)
- Functional QA:
 - Impedance test, identify shorts
 - Single module, set of scans (e.g. threshold, nosie) to determine functionality of the readout, analogue and digital circuitry
 - Endurance test to determine the stability of the module over the expected number of power cycles during the detector operation
- Mechanical QA:
 - Pull tests on wirebonds to determine quality, 1 in 10 modules tested
 - Metrology: developed and carried out by Liverpool, determine mechanical properties and quality of assembly

Component Production Status

ALPIDE chips

Production completed

-HICs

-STAVES

NOK HICs

- NOK STAVES

- Institutes: 50 µm: CERN, 100 µm: Yonsei, Pusan •
- Total chips tested ~70000
- Total wafers ~1700
- Yield 64%
- Series test ended mid 2019

Component Production Status

Readout electronics Support structures Production completed Production completed Institutes: Austin (US), Bergen (NO), CERN, Nikhef (NL), Padova (IT) • **Services IB** 192 FPGA based RUs, operating in a mild radiation environment **Detector IB** (<10 krad, 10¹¹ 1 MeV/n_{eq}) **Detector OB** Institutes: LBNL (US), CERN, Services OB Padova (IT), St. Petersburg (RU) Component production completed Insertion dry test performed ٠ Power system **Production completed** Institutes: LBNL (US), Bari (IT) ٠ CAEN powering modules available and in use in commissioning • setup CAEN Main hias Power supply n Racks (low rad)