Zero Mass Detector Project

Seth Zenz, 7 September 2022 Future UK Silicon Vertex & Tracker R&D Workshop

Zero Mass team: Adrian Bevan¹, Ian Dawson¹, Jens Dopke², Jag Mistry¹, Sam Moss^{1,2}, SZ¹, Zhidong Zhang¹

> ¹Queen Mary University of London, UK ²RAL PPD, UK

- Rationale
- Early concept prototyping
- Other example applications
- Large scale module construction
- Test results:
 - Surface shape
 - Electrical performance
 - X/X₀
- Future directions
- Summary

Rationale

- Tracker mass degrades performance
- We want to:
 - Minimise support material
 - Minimise sensor material
 - Maintain electrical properties and measurement capability
 - Maintain consistent and well-described position

Early Concept Prototyping

- Ultrathin silicon has long been known to be flexible
- Thin film theory predicts dislocations lock in on the surface, making strong stable structures
- Don't need to provide full frame to support a curved sensor
- June 2012: the STFC funded Arachnid project [CMOS MAPS] made curved silicon mechanical tokens and studied the shape. Tokens remain intact today; consistent with expectations.
 - Radius down to 13mm
 - 50 μm samples easier to handle than 25 μm
- Rigid supports on two sides sufficient for a selfsupporting silicon structure, but this talk focuses on results with 4-sided supports

Curved silicon with a 2.5 cm radius of curvature on a carbon-fibre support, demonstrating the feasibility of making low-mass, rigid FCC-ee detector systems. Credit: Queen Mary University of London.

https://cerncourier.com/a/spotlight-on-fcc-physics/

Other example applications

Flexible silicon-based alpha-particle detector C. S. Schuster et al., Appl. Phys. Lett. 111, 073505 (2017); https://doi.org/10.1063/1.4999322

Imaging sensors: Curve One, CEA Leti, Sony produce these

Sensor plane matching the Petzal surface results in simpler optics (cheaper cameras)

e.g. Brian Guenter et al.

https://doi.org/10.1364/OE.25.013010

Fig. 5. Comparative graph of curvature achieved in working sensors between this work and the significant work from the literature. A wirebonded sensor used for one camera in this study is shown in the lower right, having a spherical curvature of 23.7°. The working sensor in the upper right has a curvature of 26.7° but could not be used for this study as it does not match the lens.

ALICE ITS3 project

Large Module Construction

- DC coupled TTT10 from Micron Semiconductor
- Sensors nominally 50 μ m, with range of 30-50 μ m

Specification	TTT10
Thickness	50µm
Active Area	100mm×100mm
No. of Strips	32
Strip Pitch	3mm
Wafer Type	N-Type
Wafer Resistivity	5K ohm·cm
Metalizing	300nm Al
Wafer Technology	Float Zone
Orientation	[100]
Junction Depth	0.5µm
Strip Leakage Current	10nA Max

-2

-3

Voltage (V)

-5

-1

Large Module Construction

- Focus on flat and R=150mm modules to demonstrate the concept
- Tokens made with R down to 13mm, so plenty of scope for changing the radius either way

Convex, R=150mm

Concave, R=150mm

• Module layup for each of these variations is the same:

• Wirebonding is a little more tricky than with a flat module:

Bonding to a strip

Overview

Test Results: Surface Shape

- Use a smartscope laser-scan of the surface to measure the form
- Matlab fits the surface to a given model (cylinder shown)

- Residuals vary across the module but remain acceptable
- Room for improvement with tooling and assembly procedure

Test Results: Surface Shape

- Use a smartscope laser-scan of the surface to measure the form
- Matlab fits the surface to a given model (cylinder shown)

- Residuals vary across the module but remain acceptable
 - Slight improvement if we allow for a twist term (*)
- Room for improvement with tooling and assembly procedure

Test Results: Electrical Performance

- Post assembly there is an increase in leakage current of 4-5 nA in sensors, but no notable change in the capacitance
- Use a Cremat amp coupled with either a CRIO NI DAQ or a Tektronix MSO scope for testing
- Clear signals observed
- 3 neighbouring strips shown:
 - Closest to source (Green)
 - Adjacent (Red/White)

Test Results: X/X₀

Break the module down into 3 zones to calculate X/X₀

• Current design provides

Zone	X/X₀ (%)
1	0.054
2	0.619
3	0.703
Average	0.281

- Dominated by CFRP and Cu contributions
- Clear improvements possible to drive down to 0.17% by modifying bus tape and support
- Could be advantageous for passively cooled trackers

Future Directions

- Current Project
 - Compare to flat module (ongoing)
 - Tooling for precision construction
- Future work with TTT10
 - More systematic measurements and comparisons
 - Irradiation
 - Thermal simulation: how far can we get with passive cooling?
 - Get a really good handle on impact of thinning and curvature with a wellcharacterized module!
- Move from strip sensors to CMOS

Conclusions

- Constructed curved modules up to 10cm x 10cm
- Leakage current increase observed for curved module, but acceptable level for particle detection
- Tested using ²⁴¹Am α particles in the lab
- More to explore and improve, but we think this is a promising approach to consider for a future low mass tracker system
- Looking forward to building collaborations that take advantage of this technology and the practical experience we are building with it!

Backup

• Fitting the module surface; in addition to using a cylinder based model, also explore the use of Legendre polynomials following the CMS alignment method [1]:

[1] F. Meier C. Kleinwort. Alignment of the CMS Silicon Tracker – and how to improve detectors in the future. Nucl.Instrum.Meth., A650:240–244, 2011.