

Development of 65 nm MAPS in the UK

L. Gonella

on behalf of Birmingham, Brunel, Lancaster, Liverpool, STFC-DL, STFC-RAL

Future UK Silicon Vertex & Tracker R&D Workshop, 7 – 8 September 2022

Motivations for 65 nm in HEP

- State-of-the-art and advanced prototype MAPS for HEP use 110 180 nm CMOS imaging technologies (beyond mature in industry).
- □ Proposed future HEP facilities, planned over the next few decades will need improved performance in terms of granularity, power consumption, rate and radiation hardness → smaller feature size technology needed.
- □ The HEP community is starting exploration of 65 nm technologies
 - Higher logic density (increased performance/area, higher granularity)
 - Lower power
 - Higher speed (logic, data transmission...)
 - Process availability
 - Higher NRE costs and complexity, but lower price per area

CERN EP R&D programme: WP1.2 MAPS

nign-resolution sensor "Sensor A" (ALICE ITS-3, future e+e-).

- Pre-prototyping of a fast and rad hard sensor "Sensor B/C" (high luminosity pp experiments).
- Continuation of common activity: Technology monitoring and survey, training, design and measurement framework.
- Other explorations (Sensor D, ...) depending on findings.

First application: ALICE ITS3 detector

- https://cds.cern.ch/record/2644611 https://doi.org/10.1016/j.nima.2021.166280 https://indico.cern.ch/event/1071914/
- New generation MAPS sensor at the 65 nm node to design a truly cylindrical, extremely low mass (0.05% x/X0) vertex detector for the HL-LHC Run 4.
 - Exploit stitching over large area to design wafer scale sensors.
 - Thin sensors bent around the beam pipe.
 - Lower power in 65 nm allows air cooling.
 - Minimal support needed and services outside active area.

Spin-off: EIC Si Vertex and Tracking Detector

- EIC EPIC SVT detector concept derived from the ALICE ITS3 technology.
- □ EPIC vertex layers: ITS3 like.
 - ITS3 wafer-scale stitched sensor, thinned and bent around beam pipe.
 - − No services in active area, air cooling, minimal support structure \rightarrow 0.05% X/X0.
- □ EPIC tracking layers and disks.
 - EIC Large Area Sensor (LAS), i.e. ITS3 sensor size optimised for high yield, low cost, large area coverage.
 - Convectional carbon fibre support structures with integrated cooling.
 - Material budget estimates: 0.24% X/X0 per disk,

0.25 - 0.5 0.018 mean material (inner): 0.25 % BST Stave Layers 0.014 0.012 0.010 0.008 0.006 0.008 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.016 0.008 0.006 0.00

UK work on 65 nm

- Carried out in the context of the Electron-Ion Collider where there is already significant UK participation (more details in backup slides).
- □ R&D funding from UKRI Infrastructure Bid, preliminary phase 2021 2024.
 - WP1 MAPS, WP2 TimePix (Glasgow), WP3 Polarimetry (York).
- □ WP1 MAPS
 - Institutes involved: Birmingham, Brunel, Lancaster, Liverpool, STFC-DL, STFC-RAL.
 - Work is carried out within the EIC Silicon Consortium and EIC project and in collaboration with ALICE ITS3 and the CERN EP R&D programme.
- WP1 tasks
 - WP1.1 Sensor design
 - WP1.2 Sensor characterisation and DAQ
 - WP1.3 Modules and system tests
 - WP1.4 Detector layout simulations

MLR1 - 65 nm prototypes

- □ First submission in TowerJazz 65nm as part of the CERN EP R&D WP1.2.
 - Significant drive from ITS3, important contributions from many groups.
 - Submission in Q4-2020, testing ongoing.
- □ Scope: Technology exploration and prototype circuit blocks for future sensors.
- □ Structures:
 - Analogue and Digital Pixel Test Structures (IPHC, DESY, CERN)
 - Transistor Test Structures (CERN)
 - Bandgap/VCO (NIKHEF)
 - High Speed Structures (RAL)
 - Ring Oscillator (CPPM)

RAL circuit: LVDS receiver and CML transmitter

MLR1 testing and results

- Pixel test structures (APTS, DPTS, CE65) characterisation is carried out by a large number of institutes and people around ITS3.
 - More to join following ongoing distribution of readout systems and chips.
- □ MLR1 chips are performing exceptionally well.
 - Radiation hardness of beyond 1×10^{15} 1 MeV n_{eq}/cm² NIEL is attained.

□ Circuit blocks tests carried out by designing institutes.

https://indico.cern.ch/event/1156197/contributions/4855158/subcontributions/385 644/attachments/2465185/4227238/2022-06-20 ERPD-ITS3.pdf

MLR1 testing in the UK

- □ Testing of RAL circuit block.
 - DL/RAL TD developed testing setup.
 - Chips bonded at BHM/LIV.
 - Circuit works up ~1.5 Gbps.
 - X-rays irradiations at CERN this week.

- □ Contribution to APTS and DPTS testing.
 - Birmingham and Liverpool are bonding sites for APTS chips.
 - Readout systems just received in Birmingham and Liverpool, more to arrive at Daresbury, Lancaster, RAL.

Conclusion

- MAPS in 65 nm CMOS imaging technology are being explored at international level through CERN EP R&D programme (5-years).
- Technology performance for application as charged particle sensors confirmed by ongoing characterisation of first test structures.
- □ First applications: ALICE ITS3 and EIC (linked development).
- □ Clear potential for vertex and tracking at future colliders.
- UK institutes are participating in the development (CERN EP R&D programme and ALICE ITS3) thanks to UKRI Infrastructure Funds for EIC.

International Project Schedule

NOTE: US Financial Years (FY) = Oct-Sep

L. Gonella | Future UK Si R&D Workshop | Sept 2022

.....

UK Track Record

- □ eRD18/25 Precision silicon vertexing and tracking for the EIC (2016 2021)
 - Laura Gonella, Peter Jones, Paul Newman Birmingham
 - lain Sedgwick RAL TD (Sensor Design Group)
- □ Yellow Report (Dec 2019 Mar 2021)
 - Peter Jones 1 of 4 overall Detector WG Convenors/Editors
 - Daria Sokhan co-convenor Exclusive Physics subgroup
 - Paul Newman co-convenor of Detector Complementarity subgroup
- □ Detector Proposals (Mar 2021 Dec 2021)
 - Laura Gonella ATHENA Tracking Detector WG co-Convenor
 - Paul Newman ATHENA Inclusive Physics WG co-Convenor
 - Daria Sokhan ATHENA Exclusive/tagging Physics WG co-Convenor
 - Peter Jones ATHENA Proposal Committee Editor
 - Nick Zachariou ECCE Far Backward Detector WG co-Convenor
 - Claire Gwenlan ECCE Inclusive Physics WG co-Convenor
 - Rachel Montgomery ECCE Exclusive Physics WG co-Convenor

Current Involvement and Leadership

- EIC Users Group
 - UK has third largest European involvement after Italy and France
 - Currently <u>35 registered UK users</u>, including 2 accelerator physicists and 1 sensor designer
 - 12 UK institutions: ASTeC/Cockcroft, Birmingham, Brunel, Durham (IPPP), Glasgow, Lancaster, Liverpool, Oxford, STFC RAL (PPD and TD), STFC DL, UCL, York
 - EU Representative on EICUG Steering Committee: Daria Sokhan
- Project Detector Leadership
 - Inclusive Physics WG (Gwenlan, Kutz, Newman, Schmookler)
 - Exclusive, Diffraction & Tagging Physics WG (Klein, Montgomery, Schmidt, Sokhan)
 - Tracking Detector WG (Bossu, Gnanvo, Gonella, Li)
 - Far Backward Detector WG (Jaroslav, Korover, Piotrzkowski, Zachariou)
- EIC Silicon Consortium
 - Leadership team Laura Gonella (Birmingham), lain Sedgwick (RAL TD), Ernst Sichtermann (LBNL), Giacomo Contin (INFN Trieste), Domenico Elia (INFN Bari), Grzegorz Deptuch (BNL)

Aspiration for the Construction Phase

- □ Three detector WPs: MAPS, Timepix and Polarimetry
- MAPS: 65 nm wafer-scale sensors; co-development with ALICE-ITS3. Build 33% of central tracker – vertex and barrel layers, plus possible contribution to forward / backward disks. Technology already adopted in baseline detector.
 - Institutes: Birmingham, Brunel, Lancaster, Liverpool, STFC RAL (PPD and TD), STFC DL
- Timepix: low-Q2 tagger using Timpix4 pixel sensors. Build two tracking stations in far backward region. Detector is baseline. Timepix is a candidate technology.
 - Institutes: Glasgow, STFC DL
- Polarimetry: current activity is exploring use of novel polarised scattering media using chemical hyperpolarization. Nucleon polarimeter is not currently in baseline detector. Also, leading design of electron beam luminosity monitor.
 - Institutes: York

