Laboratoire d'Optique Appliquée

 $Palaiseau - FRANCE \ {\tt http://loa.ensta.fr}$

Plasma-afterglow-based feedback and laser-ionized plasma lenses

A. Knetsch on behalf of collaborators

CLARA User Meeting 05.07.2022

05/07/2022

Plasma afterglow metrology experiment – The team

Laboratoire d'Optique Appliquée

A. Knetsch

University of Liverpool

O. Apsimon, J. Christie, L. Corner, H. Jones, M. Radford, L. Reid, M. Yadav

University of Texas

C. Aniculaesei

University of Strathclyde

L. Boulton, F. Habib, B. Hidding, G. G. Manahan, P. Scherkl, A. Sutherland

STFC Daresbury Laboratory CLARA project team

Point of contact: E. Snedden

Complexity-driven need for simple diagnostics and synchronization

First observation

- Effect first demonstrated as part of E210 'Trojan Horse' experiment at FACET
- Afterglow light yield found to vary as a function of overlap between the drive electron beam and the plasma-photocathode laser

First observation

- Synchronization and spatial alignment of injection laser to electron beam
- Linear response to simulated energy loss identified as best model

loa

5

Numerical studies – how does it work ?

- Beam interacts with a laser-generated seed-plasma
 → Energy deposition into plasma
- Collisional ionization from oscillating plasma electrons
- Beam energies too high for collision ionization

- Heated plasma constituents interact with each other and neutral gas- more light is produced when plasma decays
- Light after decay Plasma Afterglow is therefore a simple observable depending on overlap of e-beam and laser

Application at FLASHForward

• Application at FLASHForward

- Lensing effect on part of the beam
- No enhancement of plasma afterglow observed

PIC simulations: Energy deposition

Studies of tiny plasma lenses

- Electric self-field is much more strongly shielded than the magnetic field → Net focusing
- Linear focusing only expected in central region up 1.6 sigma (includes 72.25 % of charge)
- < 2 mrad divergence of sub-beam

$$\mathbf{E}_{r}^{b}(r,\xi) = \frac{qN}{(2\pi)^{3/2}\sigma_{\parallel}\epsilon_{0}r} \left(1 - e^{-r^{2}/(2\sigma_{\perp}^{2})}\right) e^{-\frac{\xi^{2}}{2\sigma_{\parallel}^{2}}} B_{\theta}^{b}(r,\xi) = \frac{qN}{(2\pi)^{3/2}\sigma_{\parallel}c\epsilon_{0}r} \left(1 - e^{-r^{2}/(2\sigma_{\perp}^{2})}\right) e^{-\frac{\xi^{2}}{2\sigma_{\parallel}^{2}}}$$

The plan

- Co-linear geometry
- Short sub-sonic gas jet (slit geometry facilitates alignment and reduces gas load)
- Holed DSHM limits transportable divergence to electron spectrometer

11 ^{loa}

The setup in BA1

- Moderately dense electron beam
- TW laser system with LWFA capability

Energy	35.5 MeV
Charge	80 pC
Waist spot size (rms)	87 um x 38 um
Bunch length (rms)	300 fs
Laser spot size (rms)	35 um x 48 um

12

Plasma afterglow metrology experiment

13

Feedback systems for plasma accelerators

- Delay stage to control relative delay between electron beam and laser
- Plasma afterglow controlled laser delay to overlap with electron beam

Influence of backing pressure

- But: Curve needs to be calibrated for every pressure to set threshold

15

Dependency on LINAC phase

- Transition curves remain comparable in a RF phase range from -4 to -10 degree
- Plasma afterglow feedback remained stable without RF feedback

Plasma micro lens: 2D Imaging mode of plasma lens

Laser off

Laser on

.7

Evaluation of the perturbed beam part

4000

2000

-2000

-4000

-6000

-8000

6000

4000

2000

-2000

-4000

6000

4000

2000

-2000

-4000

0

0

0

10

- Butterfly gives information of sub-beam focusing
- High-divergent particles likely got absorbed in the holed mirror so appear as a 'hole' in the signal.

18

Plasma lens results

YAG image

Object-plane scan

- Use electron spectrometer to image different planes

- Combined single-shot and multi-shot measurements
- Demonstration and measurement of tiny plasma-lens focusing

19

Outlook – potential application

20

Outlook – potential application

5. Go to next stage

Outlook – AWAKE 2

- Beam density AWAKE 2 of new electron source E15 cm⁻³
- This is 1 order of magnitude higher than presented experiment
- Potential for a similar feedback system to ensure phase-stable seeding of self modulation.
- Great synergies also between FEBE beams and AWAKE 2 electron beams

Thank you for your attention