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Muon Collider target
Conceptual design selection
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Pion/muon yields for different target Z's and beam

energies (J.Back)
Low Z target is a candidate - reported at end of MAP study
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NB Beam energy is as important as power

Energy deposited in graphite target from 2MW beam
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[credit Mike Fitton — FLUKA simulation last night (!)
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T2K graphite target - 10+ years experience

« Stable operation at 500 kW at 30 GeV

« 1.3 MW prototype under construction

* Basis for LBNF target for 1.2 MW at 120 GeV (2.4 MW upgrade planned)
* Potential for Muon Collider? e
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Peak heat load for various target materials

Peak volumetric energy density per bunch train
4MW beam. 8 GeV. 6.212 protons per BT

Cylindrical targets. diameter=3*sigma
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Limitations of target technologies

Peak temperature jump [K]
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® Mu2e (8GeV, 25kW, 588kHz, 100ns, Imm)

B T2K(30GeV, 750kW, 0.47Hz, 5us, 4.24mm)

Numi(120GeV, 400kW, 0.53Hz, 8us, Imm)

¢ Nova (120GeV, 700kW, 0.75Hz, 8us, 1.3mm
)

A LBNE(120GeV, 2.3MW, 0.75Hz, 10us,
1.5mm+)

@ ISISTS2 (800MeV, 32kW, 10Hz, 200ns,
6mm)

¥ ISISTS1(800MeV, 160kW, 50Hz, 200ns,
16.5mm)

EURONu (4.5GeV, 4AMW, 50Hz, 5us, 4mm)
4 Neutrino Factory (8GeV, 4AMW, 50Hz, 2ns,
1.2mm)

ERESS (2GeV, 5SMW, 14Hz, 2ms)

BADSR
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'Divide and Rule’ for increased power

Dividing material is favoured since:

« Better heat transfer

« Lower static thermal stresses

« Lower dynamic stresses from intense beam pulses
* Particle bed is a conventional solution

Helium cooling is favoured (cf water) since:

* No 'water hammer' or cavitation effects from pulsed
beams

 Lower coolant activation, no radiolysis

« Negligible pion absorption - coolant can be within beam
footprint

« For graphite, higher temperatures anneal radiation damage
Low-Z target concepts preferred (static, easier)
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transverse flow configuratio
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Particle bed challenges and limits
- heed for R&D

High pressure drops, particularly for long thin
target geometry

* Need to limit gas pressure for beam windows
Transverse flow reduces pressure drops

 But difficult to get uniform temperatures and
dimensional stability of container

Radiation damage of container windows

Possible vibration and erosion of spheres and
container from pulsed beam and thermal cycling
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Fluidised tungsten powder technology

« High Z refractory metal - maximal production of pions
* Alternative to Muon Collider liquid mercury jet
 Pneumatically (helium) recirculated tungsten powder

« An innovative generic target system exploiting well-
established granular flow technology

« Demonstrated off-line at RAL

« 15t in-beam experiment on mixed crystalline powder
sample carried out at HiRadMat facility, CERN in 2012

» 2" HiRadMat experiment carried out in 2015

Science & Technology Facilities Council
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Fluidised Tungsten Powder Experiments (Offline)

« Test rig built and operated at
Ru‘rher?or‘d A fle’ron Laboratory
from 2009-2018

- Demonstrated key powder
handling processes:

— Suction lift of powder (lean
phase fluidisation)

— Pneumatic conveying of
dense phase powder (~507%
volume fraction)

— Ejection of powder as a
dense fluidised jet (~40%
volume fr'ac‘rion)J

— Continuous recirculation of
powder, allowing for an
uninterrupted stream of
target material
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Key components of RAL fluidised powder rig
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[1] O. Caretta, C. J. Densham, T. W. Davies and R. Woods, “Preliminary Experiments
on a Fluidised Powder Target,” in Proceedings of
EPAC08, WEPP161, Genoa, Italy, 2008.
[2] C.J.Densham, O. Caretta and P. Loveridge, “The potential of fluidised powder
target technology in high power

accelerator facilities,” in Proceedings of PAC09, WE1GRC04, Vancouver, BC,
Canada, 2009.
[3] T.Davies, O. Caretta, C. Densham and R. Woods, “The production and anatomy
of a tungsten powder jet,” Powder Technology, vol. 201,
no. 3, pp. 296-300, 2010.
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Continuous flow demonstrated (batch mode)
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Circulating Fluidized Bed technology

« Read the literature & re- —©
imagine for a MC | O

Hindawi Publishing Corporation I/ ~y

Journal of Powder Technology \_P)—‘ o
Volume 2015, Article ID 293165, 9 pages \E/.
hittp://dx doi.org/10.1155/2015/293165 T /
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With the development of circulating fluidized beds (CFB) and dense upflow bubbling fluidized beds (UBFB) as chemical reactors,
or in the capture and storage of solar or waste heat, the associated downcomer has been proposed as an additional heat transfer
system. Whereas fundamental and applied research towards hydrodynamics has been carried out, few results have been reported
on heat transfer in downcomers, even though it is an important element in their design and application. The wall-to-suspension — @ / M @
heat transfer coefficient (HTC) was measured in the downcomer. The HTC increases linearly with the solids flux, till values of J

1

about 150 kg/m” s. The increasing HTC with increasing solid circulation rate is reflected through a faster surface renewal by the
downflow of the particle-gas suspension at the wall. The model predictions and experimental data are in very fair agreement, and
the model expression can predict the influence of the dominant parameters of heat transfer geometry, solids circulation flow, and \ |
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Tungsten Powder Experiments (Online)

« Two in-beam experiments carried out at CERN's HiRatMat
facility
— Beam induced lifting of the powder was observed
— Eruption velocities lower than for liquid mercury at the same

energy density
— Future experiments needed for powder contained in tube
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Response of various size spherical tungsten particles to 2E11 protons

[1] O. Caretta, T. Davenne et al., “Response of a tungsten powder target to an incident high energy proton beam,” Physical review
special topics - accelerators and beams, vol. 17, no. 10, DOI: 10.1103/PhysRevSTAB.17.101005, 2014.
[2] O.Caretta, P.Loveridge et al., “Proton beam induced dynamics of tungsten granules,” Physical Review Accelerators and Beams,
21, no. 3, DOI: 10.1103/PhysRevAccelBeams.21.033401, 2018.
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Fluidised Tungsten Powder - Future R+D

Selection of container materials (SiC-SiC
composite?)

Measurement of erosion rates, and development
of improved components to mitigate erosion risk

Development of powder circuit design to minimise
or eliminate moving parts

Measurement of heat transfer between flowing
tungsten powder and container wall

Development of improved diagnostics for
automated operation and fault detection

Investigate the use of spherical powder to

__improve flow characteristics

@ .....3Sidels,

W@ Rutherford Appleton Laboratory



Pragmatic plan for target technology

Previous MC baseline of hiﬁh—Z liquid metal tfarget best avoided (liquid
Hg likely excluded at CERN ref Marco Calviani)

Low-Z more feasible than High-Z
— (Plus lower neutron & heat load on SC solenoid)

Graphite has an excellent pedigree as a target material - well worth
pursuing for a MC

— May need larger radius than physics optimum
— Lifetime limited

If monolithic target not feasible, try a packed particle bed target
(NB bulk fraction ¢.50%)

If High-Z is strongly favoured, then fluidised tungsten powder offers
an inferesting potential technology

— Needs a (mostly) off-line research programme plus more pulsed
beam experiments at HiRadMat

The optimum target is one that works - continuously and reliably!
Materials science - cross-cutting issue for any target technology...
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