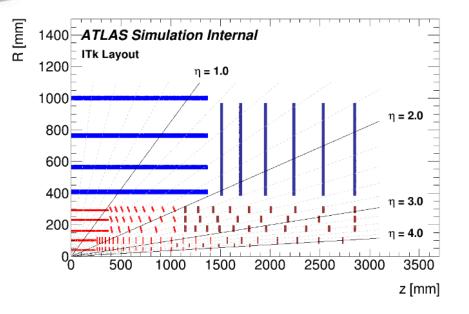


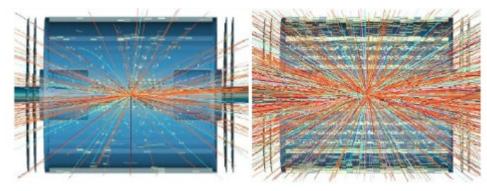
High Voltage MUX for ATLAS Strip Tracker Upgrade

EG Villani

on behalf of the ATLAS HVMUX group

RAL PPD 25 May 2022




Overview

- Introduction: needs for HVMUX in ITK in ATLAS Upgrade and current implementation
- HV-MUX details:
 - requirements
 - design
 - radiation hardness
 - reliability
- Summary & conclusions

Introduction

From 1E33 cm⁻² s⁻¹

...to 5E34 cm⁻² s⁻¹

Phase 2 (HL-LHC) will see a replacement of the entire Inner Detector (ID) by an ~ 200 m² Silicon Tracker (Itk). Detectors arranged on staves (barrel) and petals (end-caps)

Challenges facing HL-LHC detector upgrades

•Higher Occupancies (~ 200 interactions / bunch crossing)

 \backsim Finer Segmentation •Higher Particle Fluences (~ 10^{14} outmost layers to ~ 10^{16} innermost layers

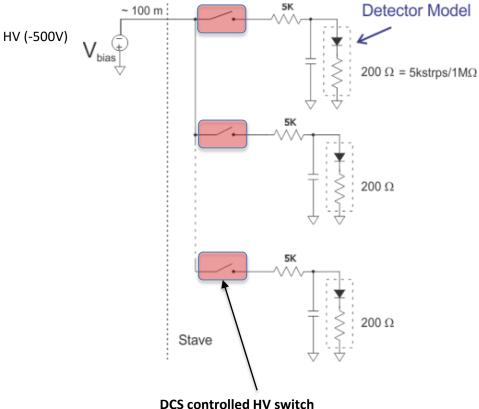
Generation Sector Sector Generation Sector Generation Sector Sector Generation Sector Generation (~ 10 increase in dose w.r.t. ATLAS)
 Larger Area (~ 200 m²)
 Generation Generatio Generation

material budget

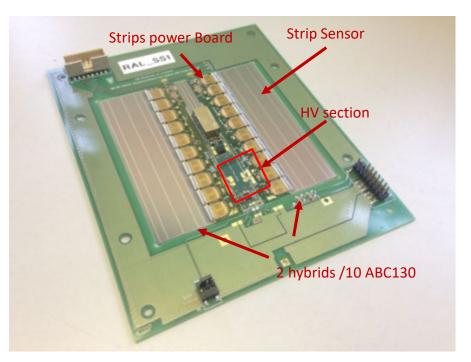
HV distribution

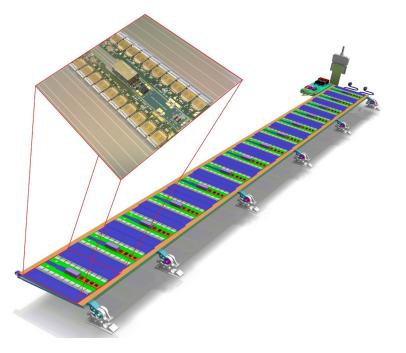
Current SCT uses independent powering for the 4088 detector modules. Each sensor has its own independent HV bias line.

'Ideal' solution:


- High Redundancy
- Individual enabling or disabling of sensors and current monitoring

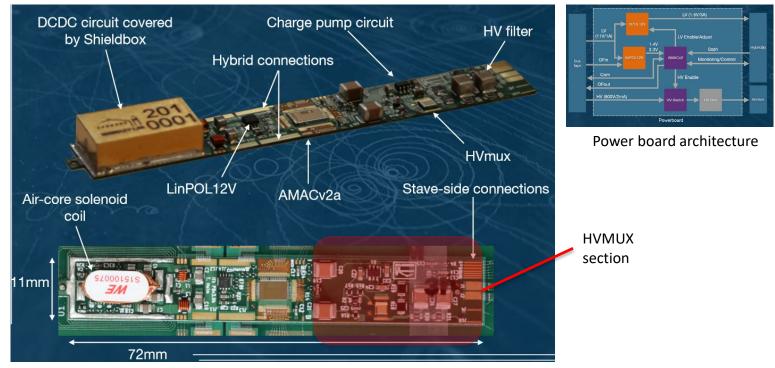
But individual HV cables is not feasible for ITk for material budget and space reasons


HV-MUX motivation


- Use single (or more) HV bus to bias all 14 sensors in a ½ stave and use one HV switch for each sensor to disable malfunctioning sensors: High Voltage Multiplexing 'HV-MUX'
- The HV switch is Detector Control System (DCS) controlled, with control signals provided by custom ASIC
- First investigation around 2010

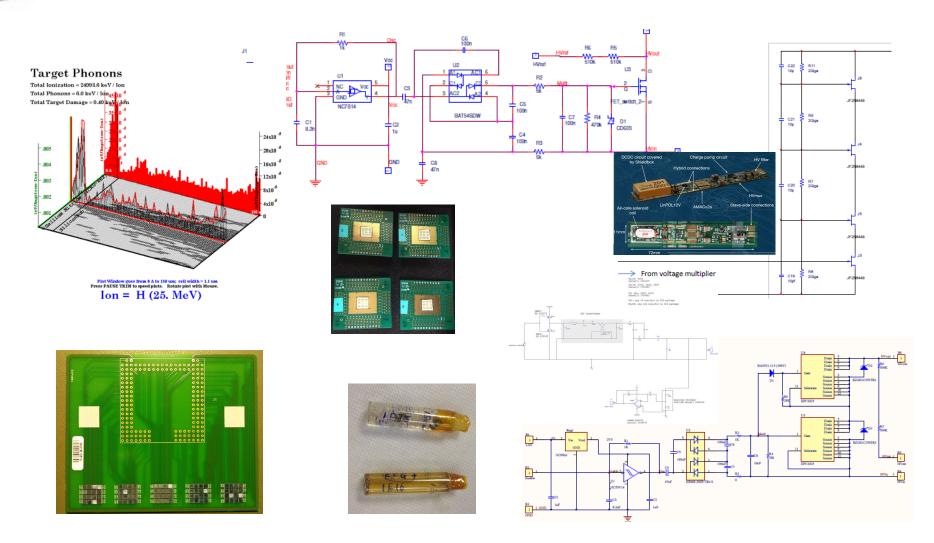
HV-MUX implementation

RAL Barrel Short Strip Module


Barrel Long Strip Module

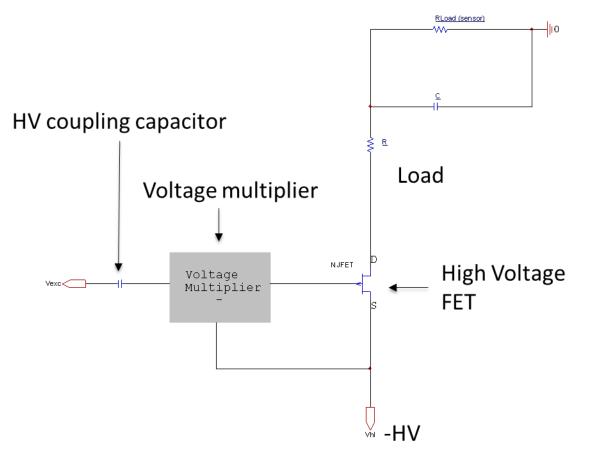
Carbon composite "stave"/"petal" structures hosts up to 14 modules, providing support and services

HV-MUX implementation

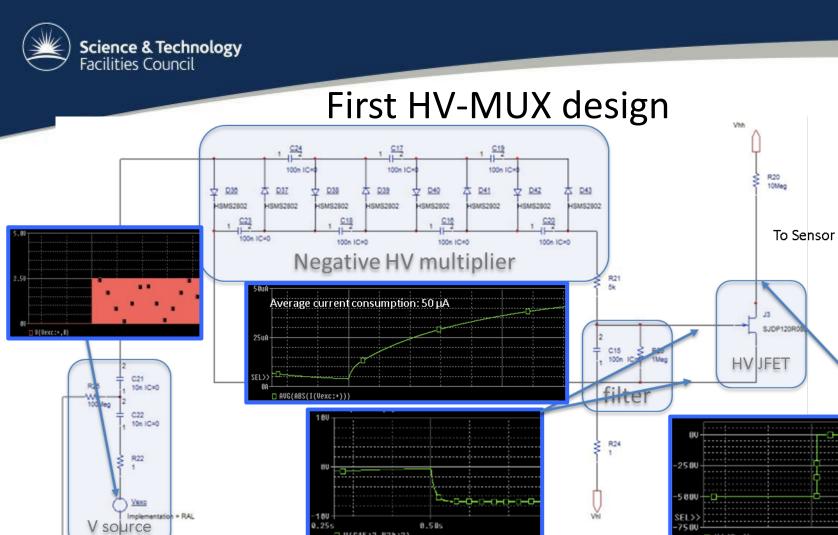

Power board v3.0b

The flexi module powerboard includes HV-MUX circuitry, DC-DC converter for LV distribution and the AMAC (Autonomous Monitor And Control) ASIC for monitoring and control. HV MUX adopted as baseline for strips in 2019.

HV-MUX details


HV-MUX requirements

High Voltage switches strip detector requirements:


- Must be rated to 500V plus a safety margin
- Must be radiation hard, nominal maximum expected over lifetime ${\sim}1x10^{15}$ n_{eq}/cm^2 , ${\sim}$ 30Mrad (Si) for strip end cap. Multiply by 1.5 to include safety margin
- On-state impedance $R_{on} \ll 1k\Omega //I_{on} \sim 10mA$ (for irradiated strip sensors)
- Off-state impedance $R_{off} >> 1G\Omega // I_{lkg} << I_{sens}$
- Must be unaffected by magnetic field
- Must maintain satisfactory performance at -30° C
- Must have <1% lifetime failure rate
- Must be small (mass/area constraint) and cheap (around 20,000 needed)

HV-MUX conceptual design

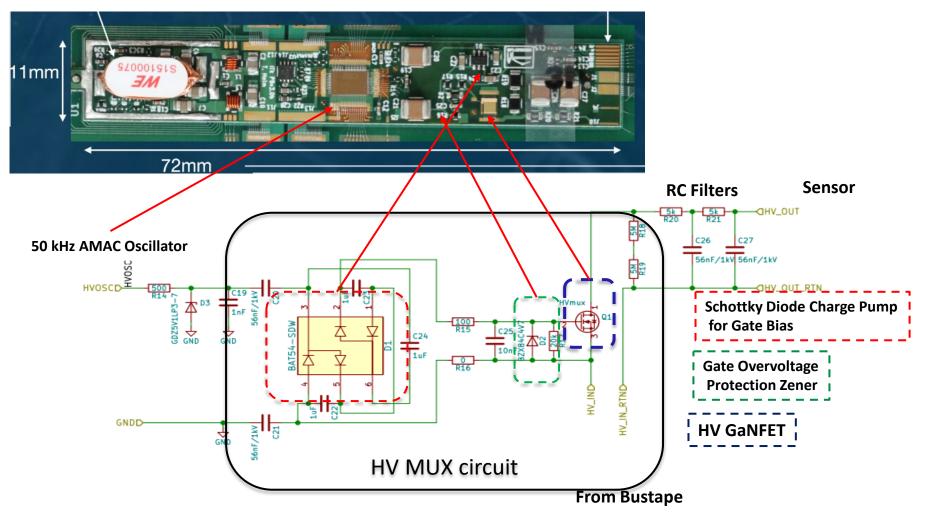
A circuit solution was identified as promising early in the project: AC coupled VMPY drives the HV FET device on to enable HV bias to the sensor. The solution would work regardless of the driving requirement of the HV FET (i.e. negative, positive, several V's of Vth

1/046.9 026.

The V_{src} oscillation gets multiplied and reversed in polarity: the negative voltage is used to shut off the depletion JFET;

V(J3:d)

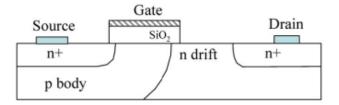
C: 100nF (6.3V, 603 pack); 10 nF (500V, 805 pack)


D: HSMS2802 (Schottky), SOT23

The negative voltage is generated ONLY when the JFET needs shutting off: no power is needed during normal operation (i.e. when the JFET switch is ON).

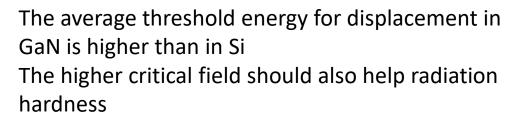
HV-MUX final design

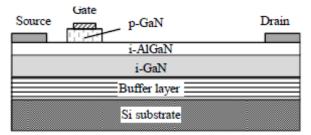
LBNL V3 PowerBoard with HV Mux

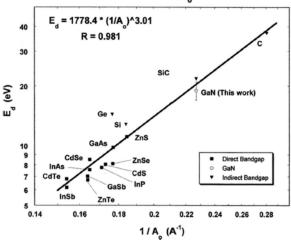

HV-MUX design: active devices

Si, SiC and GaN based devices have been investigated as HV active FET

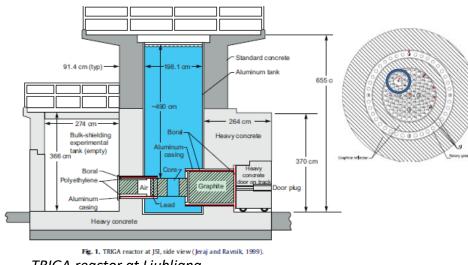
Manufacturer	Device type, material	Part No	Pass/fail
Infineon	Si MOSFET		Fail
ROHM	Si MOSFET		Fail
Crystalonic	Si JFET	2N6449	Fail
Interfet	Si JFET	2N6449	Fail
IXYS	Si MOSFET	CPC5603	Fail
USCi	SiC depletion JFET	UJN1205	Fail
SemiSouth	SiC vertical enhancement JFET	SJEC170R550	-
	SiC vertical enhancement JFET	SJEP120R063	-
CREE	SIC MOSFET	CPMF-1200	Fail
ROHM	SIC MOSFET	SCT2080KE	Fail
ROHM	SIC MOSFET	S2403	Fail
Fairchild/Transic	SiC vertical BJT	FSiCBB057A120	Fail
GeneSiC	SiC vertical SJT (looks like BJT)	GA04JT17	Fail
Transphorm	GaN JFET	TPH2006C	Fail
EPC	GaN lateral enhancement JFET	10112 // EPC2012	PASS
GaN Systems	GaN lateral enhancement JFET	GS66502B	PASS
Panasonic	GaN enhancement FET	PGA26E19	PASS

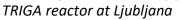

Most devices failed the radiation test




A Lateral Double-Diffused MOS (LDMOS). A long drift region of lower doping reduces the electric field

Parameter	Silicon	GaN	
Band Gap Eg	eV	1.12	3.39
Critical Field E _{Crit}	MV/cm	0.23	3.3
Electron Mobility μ_n	cm ² /V·s	1400	1500
Permittivity ε_r		11.8	9
Thermal Conductivity λ	W/cm·K	1.5	1.3





A cross section of GIT based on GaN. The 2DEG is formed by piezoeffect at AlGaN-GaN


Cyclotron at Birmingham

'Passive' irradiation

Radiation tests, on packaged devices and bare die, done at :

- Birmingham cyclotron 26 MeV p+
- Neutron Irradiation at TRIGA reactor in Ljubljana (Slovenia). Broad energy spectrum (channel dependent) with 33% of fast neutrons
- 600 MeV proton beam at Los Alamos (US)
- 300 MeV pions at Paul Scherrer Institute (Zurich, Switzerland
- Heavy Ion for SEE (259 MeV Ge and 210 MeV Ti) at BNL
- 180 GeV Pions at CERN
- Gamma irradiation at BNL
 - See backup for radiation tests on other HV MUX elements

SRIM MC to estimate maximum TID, NIEL and defects from 26 MeV p+

- Simplified AlGaN/Gan/Si device
- No electrical bias, no annealing
- 10,000 events / run

GaN TID: Average Ionization @ 25MeV p+ in the device (1E4 MC events)

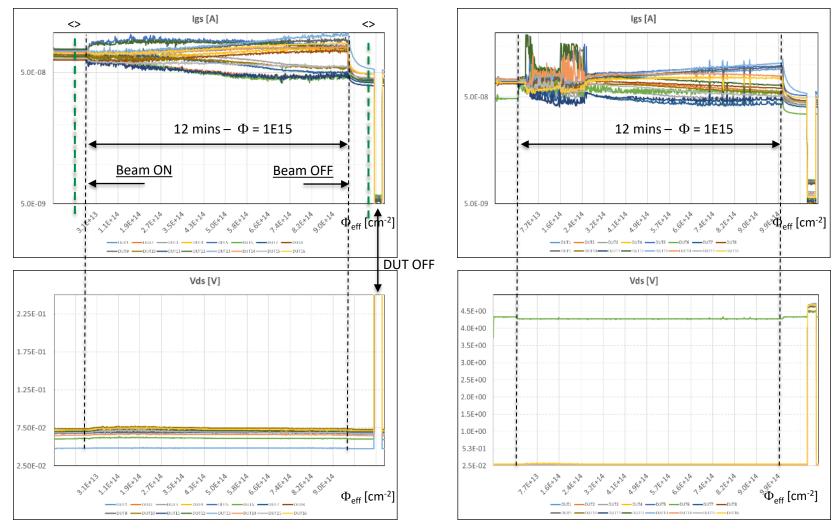
 $D_{GaN} = Φ * 2.29 x 10^{-7} [rad] → Φ = 1*10^{15} : D_{GaN} = 229 Mrad$



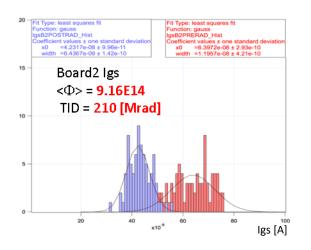
Voltage	Year	Supplier	Beam	particles	Dose (Mrad)	fluence (neq)	n passed	n tested	comments
600	2016	Panasonic	PSI Zurich	300MeV pion	34	1.34E+015	19	20	unpowered
600	2017	Panasonic	Birmingham	26MeV p+	188	8.20E+014	9	9	in situ testing passed
600	2017	Panasonic	Birmingham	26MeV p+	229	1.00E+015	9	9	On-state Ids=10mA
600	2017	Panasonic	Birmingham	26MeV p+	176	7.70E+014	9	9	On-state Ids=10mA
600	2017	Panasonic	Birmingham	26MeV p+	243	1.06E+015	9	9	radiation dose approximate
600	2016	Panasonic	Los Alamos	600MeV p+	74-95	2.8-3.6E+015	16	16	On-state Vgs=2.5V
600	2016	Panasonic	Ljubljana	neutron		1.10E+015	20	20	On-state Ids=10mA
Total		Panasonic					91	92	bare die devices

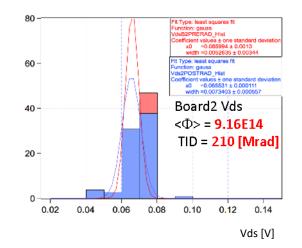
Example of Panasonic GaN bare die test from first run

- All but one devices tested survived (consensus is that it was faulty from the start)
- Tests done passively and actively



- 400 PGA26E19 GaNFETs devices have been tested in 'real time', i.e. monitoring, using a dedicated DAQ, their Igs and Vds shifts in the ON state during 26 MeV proton irradiation at University of Birmingham up to Φ = 1e15 cm-2
- The 400 GanFETs are divided among 5 boards (DaBo), each carrying 80 devices. On each DaBo the 80 devices are arranged in 5 blocks of 16 devices each
- Each block of 16 devices is of size 10 x 10 mm2 (i.e. the proton beam size), inter gap of 10 mm
- Each block is individually 'tested', i.e. irradiated up to the nominal fluence 1E15, before moving on to the next block. When all the 5 blocks of the DaBo have been tested, the DaBo is unplugged and replaced with the next one
- The devices in die form, have been soldered onto the DaBo, with a yield of 96.75%. All the devices (100%) passed the irradiation test.




active devices radiation hardness Board2 Block3 Board1 Block4

Example of Igs and Vds changes during 26 MeV p+ test

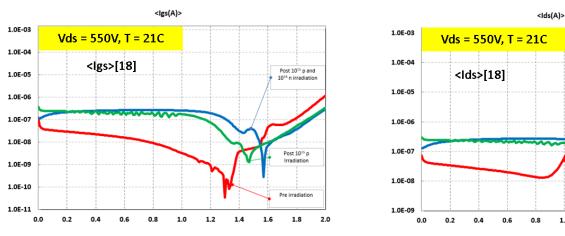
1.0

1.2

1.4

1.6

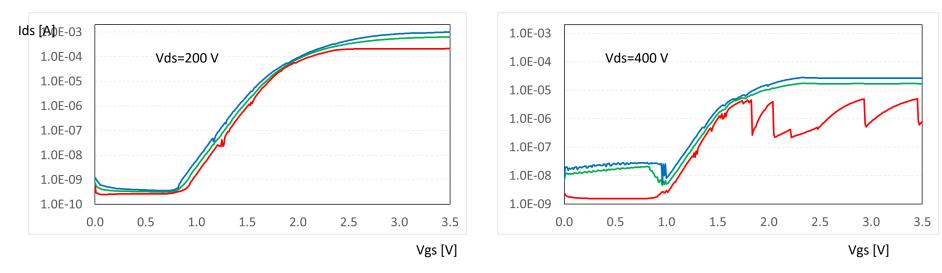
Post 1015 p and 1016 n irradiation


Post 1015 p

Irradiation

Pre irradiation

1.8


2.0

Average of PGA26E19 lgs and lds vs. Vgs changes following p (1e15) and n (1e16) irradiation

active devices radiation hardness 1e17 n fluence

Average of 10 PGA26E19 Panasonic Ids vs. Vgs following 1e17 n- irradiation

The PGA26E19 Panasonic GaN were tested to extreme level of neutron fluence

- All devices 'survived' (they can be turned on and off)
- Much degraded characteristics: conductivity dropped and Ids dependence on Vds

reliability

Consider N=4 and N=7 devices on single HV bus Assumed input probabilities

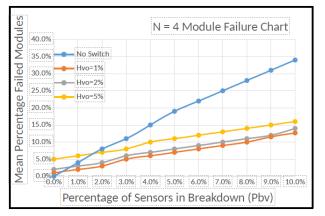
P_{bv} = probability sensor shorts on goes into breakdown

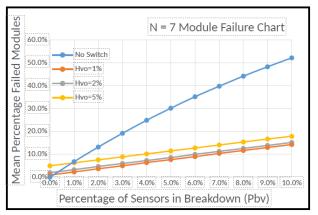
P_{so} = probability HV Switch fails open

PAMAC = probability AMAC fails to deliver clock

P_{driver} = probability HV Driver circuit fails

P_{sc} = probability HV Switch fails closed


Derived probabilities


 $P_{hvo} = 1 - (1 - P_{so})(1 - PAMAC)(1 - P_{driver}) = probability HV$ switch circuit fails open

 P_{bus} = probability the common HV bus fails with no HV Mux P_{hv-bus} = probability the common HV bus fails with HV Mux

Plot Mean Percentage of Failed Modules as function of (unknown) probability a sensor goes into breakdown or shorts with and without the use of HV Mux.

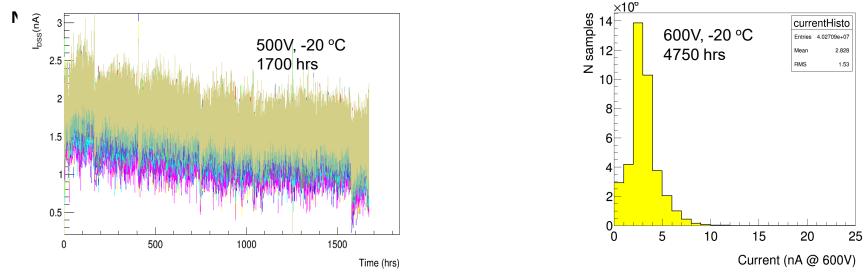
Plot for N = 4 modules on single HV line (default) and N = 7 modules (previous baseline)

HV Mux can be viewed as insurance against > 2% of sensors failing

Summary and conclusions

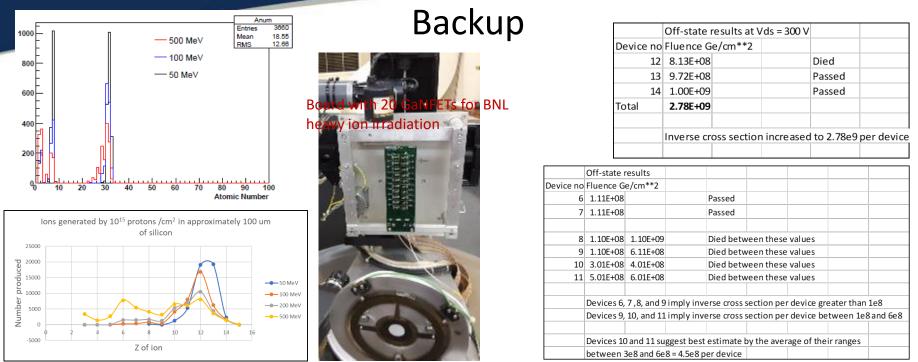
- The HVMUX solution has been proposed for strips ITK as a safety measure against possible failures arising from parallel HV biasing
- Many HV devices have been investigated and discarded; HV GaNFETs identified as satisfying the required characteristics
- Extensive irradiation campaigns (n, p, γ , π) up to n fluences 10¹⁶ cm⁻² and TID > 200 Mrad, long term reliability studies and SEE sensitivities demonstrated the very high radiation hardness of GaNFETs. Circuitry employing GaN FET to implement HV MUX successfully demonstrated. No issues on extra noise picked up from strips demonstrated.
- Additional failure analyses have been carried out
- HVMUX solution adopted as baseline for strips ITK in March 2019
- About 10 wafers (i.e. 24,000 new devices) order from Panasonic in Jan 2020.
- Final additional radiation tests, to confirm previous results, to be performed by May 2020 (postponed to 2022)

THANK YOU

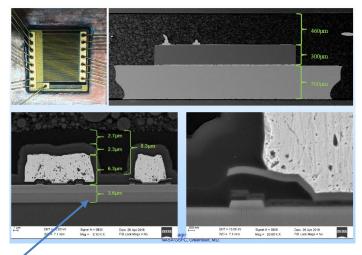

10 pion CERN irradiated (5E14) GaNFETs devices were used for long term testing and kept to -20°C, ~30% relative humidity in freezer

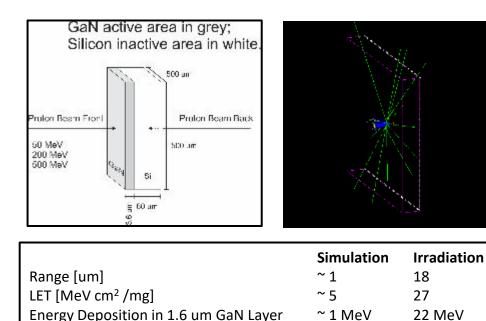
-20 deg C, 500V for 1700 hrs

-20 deg C, 600V for 4750 hrs


+21 deg C, 500-600V for 1800 hrs: in bunches of 10 cycles of 2 hours off, 22 hours on each.

- Off-state: monitor I(dss) with V(ds) 500 or 600V, V(gs) = 0V
- Generally very stable behaviour, with VERY low leakage currents. No failures.
- Variations in the current due to run starting-stopping, fridge cycling etc.


- To the degree that JEDEC standards and models hold, Panasonic data shows there should be negligible losses due to wear-out of devices
- Cold testing demonstrates no other unexpected failure mechanism



- Investigate susceptibility Sib Bingle Event Effects (SEE) that are destructive (recommendation from Module PDR). SEE studies at BNL Tandem Van de Graaff facility using 259 MeV Ge and 210 MeV Ti
- Spallation and fission nuclear processes are capable of generating very high Linear Energy Transfers (LET) or stopping
 powers dE/dx ions. Protons (or pions) may produce ions which deposit large energies. Spallation may produce ions of
 atomic number as high as one greater than that of the target nucleus.
- Choose primary irradiation species to be Germanium, atomic number = 32, is one higher than Gallium (Z=31).
- Used motherboard with 20 GaNFETs mounted. These were the same GaNFETs already irradiated to > 60 Mrad with gammas at BNL.
- Initially focused on devices in on-state. No failures to 6×10^9 Ge/cm² on single device, 1.5 x 10^{10} Ge/cm² total.

GaN + Buffer layer only ~ 3.6 um thick

22 MeV

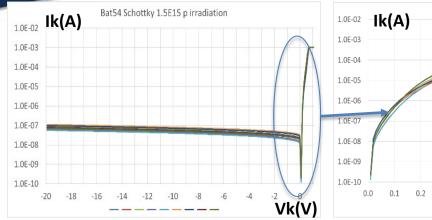
~ 1 MeV

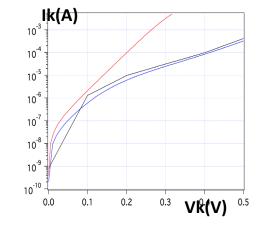
- Simulation of Nuclear Interactions (Spallation + Fission) in Panasonic GaNFET with Geant4
- 50 MeV, 100 MeV, 500 MeV Protons on GaNFET, 1 x 10⁸ Events
- Energy and LET in 1.6 um GaN layer is significantly higher in actual irradiation than what we would expect in proton (or charged hadrons) nuclear events.
- GaNFETs extremely resistant to SEE effects in on-state even when depositing energy more than 10,000 larger than a 500 MeV proton in 1.6 um thick GaN region via ionization.
- It is possible to eventually kill them in off-state though the survive > 1×10^8 Ge events. Difficult to tie this to actual charged hadron fluence in ATLAS.

0.3

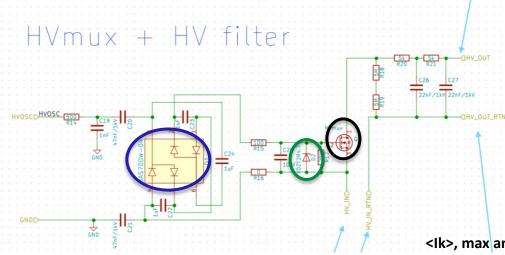
04

Bat54 Schottky 1.5E15 p irradiation

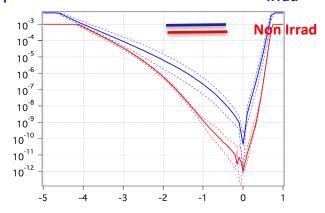

0.5


0.7 0.8

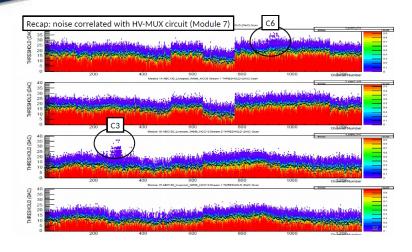
0.6

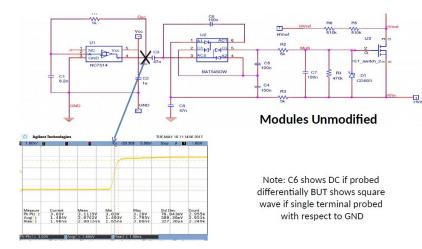

0.9 1.0

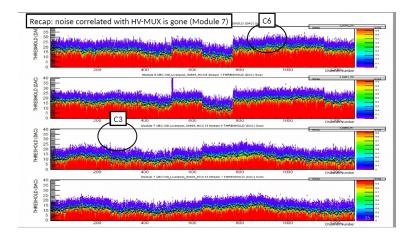
Vk(V)

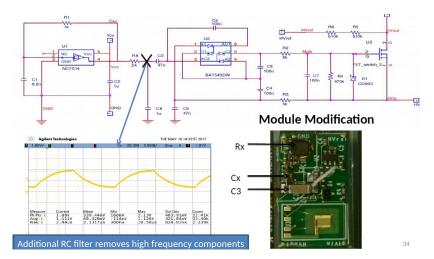


Ik and Vk of #10 DUTs BAT54STW Schottky diodes (1 DUTs over 10 packages). Fluence 1.5E15 protons




Comparison in the FWD region of #10 BAT54STW Schottky diodes non irradiated, 6E15 n irradiated, 1E15 p irradiated Irrad




<Ik>, max and min of #10 pre and post p irradiation BZX84C4V7 Zener diodes . Fluence 1.5E15 protons

