High-precision measurement of the W boson mass with the CDF II detector

Chris Hays, Oxford University

Electroweak gauge boson masses

In a gauge-symmetric theory the phase of a matter field does not affect physical processes

$$
\begin{gathered}
\text { QED: } \mathscr{L}=D_{\mu} \phi D^{\mu} \phi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}, \\
\phi^{\prime}=e^{i e \alpha(x)} \phi, \quad A^{\prime \mu}=A^{\mu}-\partial^{\mu} \alpha(x) \\
\mathscr{L}^{\prime}=\mathscr{L}
\end{gathered}
$$

The gauge field transports the matter field according to the gauge field strength (curvature)

The gauge symmetry allows a choice of axes that removes the phase

Electroweak gauge boson masses

The weak gauge symmetry $\operatorname{SU}(2)$ transports the phase through three fields W_{1}, W_{2}, W_{3}

$$
\mathscr{L}=D_{\mu} \phi^{a} D^{\mu} \phi^{a}+\mu^{2} \phi^{\dagger} \phi-\lambda\left(\phi^{\dagger} \phi\right)^{2}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

The expectation value of the scalar (Higgs) field creates an energetically favorable direction Still free to choose coordinates but perpendicular oscillations raise the gauge field energy Results in massive gauge bosons with a scalar (spin-0) component

Higgs boson mass

Higgs field potential

$$
\begin{gathered}
m_{H}=v \sqrt{2 \lambda}=125 \mathrm{GeV} \\
\lambda \approx 0.1
\end{gathered}
$$

Quantum corrections

Naively integrating to a cutoff scale Λ :

$$
\Delta m_{H}=\frac{3 g^{2} m_{t}^{2}}{16 \pi^{2} m_{W}^{2}} \Lambda^{2}
$$

If there is no new physics up to scale Λ then we need 'fine-tuning' to cancel the quantum corrections

1\% fine tuning: $\Lambda=6.6 \mathrm{TeV}$
Motivates TeV-scale new physics

Electroweak gauge boson masses

Gauge field potential
Quantum corrections

$$
\begin{aligned}
& V=-\frac{g^{2} v^{2}}{8}\left[\left(W_{\mu}^{+}\right)^{2}\right.\left.+\left(W_{\mu}^{-}\right)^{2}\right] \\
&-\frac{v^{2}\left(g^{2}+g^{2}\right)}{8} Z^{\mu} Z_{\mu} \\
& m_{W}=\frac{v}{2} g
\end{aligned}
$$

$$
m_{W}^{2}=\frac{\hbar^{3}}{c} \frac{\pi \alpha_{E M}}{\sqrt{2} G_{F}\left(1-m_{W}^{2} / m_{Z}^{2}\right)(1-\Delta r)}
$$

$$
v=246 \mathrm{GeV} \text { and } g=0.64
$$

$$
m_{W}=78.7 \mathrm{GeV}
$$

Global fit to SM measurements yields indirect W boson mass of $81354 \pm 7 \mathrm{MeV}$

W boson mass and naturalness

The W boson mass is the most sensitive observable to sources of 'naturalness'

Classic example: Supersymmetry

Mass splittings in supersymmetric isospin doublets: different mass shifts for W \& Z bosons

W boson mass and naturalness

Difference in corrections to W and Z propagators encapsulated by ρ parameter

$$
\Delta \rho=\frac{\Sigma^{Z}(0)}{M_{Z}^{2}}-\frac{\Sigma^{W}(0)}{M_{W}^{2}}
$$

$\Delta \rho_{0}^{\mathrm{SUSY}}=\frac{3 G_{\mu}}{8 \sqrt{2} \pi^{2}}\left[-\sin ^{2} \theta_{\hat{t}} \cos ^{2} \theta_{\hat{t}} F_{0}\left(m_{\hat{t}_{1}}^{2}, m_{\hat{t}_{2}}^{2}\right)-\sin ^{2} \theta_{\tilde{b}} \cos ^{2} \theta_{\tilde{b}} F_{0}\left(m_{\bar{b}_{1}}^{2}, m_{\bar{b}_{2}}^{2}\right)\right.$ $+\cos ^{2} \theta_{\tilde{t}} \cos ^{2} \theta_{\bar{b}} F_{0}\left(m_{\tilde{t}_{1}}^{2}, m_{\bar{b}_{1}}^{2}\right)+\cos ^{2} \theta_{\tilde{t}} \sin ^{2} \theta_{\tilde{b}} F_{0}\left(m_{\tilde{t}_{1}}^{2}, m_{\bar{b}_{2}}^{2}\right)$ $\left.+\sin ^{2} \theta_{\tilde{t}} \cos ^{2} \theta_{\bar{b}} F_{0}\left(m_{\hat{t}_{2}}^{2}, m_{\bar{b}_{1}}^{2}\right)+\sin ^{2} \theta_{\tilde{t}} \sin ^{2} \theta_{\bar{b}} F_{0}\left(m_{\hat{t}_{2}}^{2}, m_{\bar{b}_{2}}^{2}\right)\right]$.

$$
\delta M_{W} \approx \frac{M_{W}}{2} \frac{c_{W}^{2}}{c_{W}^{2}-s_{W}^{2}} \Delta \rho
$$

W boson mass and naturalness

More generally the SM effective field theory parameterizes high-scale effects

$$
\mathcal{L}_{S M E F T}=\mathcal{L}_{S M}+\mathcal{L}^{(5)}+\mathcal{L}^{(6)}+\mathcal{L}^{(7)}+\cdots, \quad \mathcal{L}^{(d)}=\sum_{i=1}^{n_{d}} \frac{C_{i}^{(d)}}{\Lambda^{d-4}} Q_{i}^{(d)} \quad \text { for } d>4
$$

$$
\frac{\delta m_{W}}{m_{W}}=\left(0.34 c_{H D}+0.72 c_{H W B}+0.37 c_{H l 3}-0.19 c_{l l 1}\right) \frac{v^{2}}{\Lambda^{2}}
$$

$$
\begin{aligned}
\text { For } \delta m_{W} / m_{W}= & 0.1 \% \text { and } \mathrm{c}_{\mathrm{HD}}=1, \Lambda=4.5 \mathrm{TeV} \\
& \text { e.g. } \mathrm{Z}^{\prime} \text { boson }
\end{aligned}
$$

For $\delta m_{W} / m_{W}=0.1 \%$ and $\mathrm{chws}^{\prime}=1, \Lambda=6.6 \mathrm{TeV}$ e.g. compositeness

Smaller $\mathrm{c}_{\mathrm{i}} \rightarrow$ smaller Λ

W boson mass measurements

CDF II measurement of the W boson mass

CDF II detector consists of
silicon vertex detector
large drift chamber
coarse calorimeter towers
outer muon chambers
$\sqrt{s}=1.96 \mathrm{TeV}$ proton-antiproton collisions from the Fermilab Tevatron

CDF II measurement of the W boson mass

$4 x$ the integrated luminosity of the previous measurement

Higher $\langle\mu\rangle$: peaks at 3

Measurement uses complete Tevatron Run II data set

CDF II measurement of the W boson mass

W bosons identified in their decays to $e \nu$ and $\mu \nu$

Mass measured by fitting template distributions of transverse momentum and mass

$$
m_{T}=\sqrt{2 p_{T}^{l} p_{T}(1-\cos \Delta \phi)}
$$

Calibrations

Measurement requires precise calibrations and momentum scale and resoution

Charged lepton scale

Calibrations

Measurement requires precise calibrations and momentum scale and resoution

$$
\vec{p}_{T}=-\left(\vec{p}_{T}^{l}+\vec{u}_{T}\right)
$$

Recoil scale

Detector simulation

Developed custom simulation for analysis

Models ionization energy loss, multiple scattering, bremsstrahlung, photon conversion, Compton scattering
Acceptance map for muon detectors
Parameterized GEANT4 model of electromagnetic calorimeter showers
Kotwal \& CH, NIMA 729, 25 (2013) Includes shower losses due to finite calorimeter thickness

Hit-level model of central outer tracker Layer-by-layer resolution functions and efficiencies

Material map of inner silicon detector Includes radiation lengths and Bethe-Bloch terms

Muon momentum calibration

First step is to align the drift chamber (the "central outer tracker" or COT)
Two degrees of freedom (shift \& rotation) for each of 2520 cells made up of twelve sense wires constrained using hit residuals from cosmic-ray tracks

Muon momentum calibration

First step is to align the drift chamber (the "central outer tracker" or COT)
Two parameters for the electrostatic deflection of the wire within the chamber constrained using difference between fit parameters of incoming and outgoing cosmic-ray tracks

Muon momentum calibration

Second step is to calibrate the momentum scale using J / ψ decays to muons
Simulation:
Adjust kinematics to match the data
Model resonance shape using hit-level simulation and NLO form factor for QED radiation

Muon momentum calibration

Second step is to calibrate the momentum scale using J / ψ decays to muons
Simulation corrections:
Correct the length scale of the tracker with mass measurement as a function of $\Delta \cot \theta$ Correct the amount of upstream material with mass measurement as a function of p_{T}^{-1}

$\xrightarrow{\sim}$

Muon momentum calibration

Third step is to calibrate the scale using Υ decays to muons
Compare fit results with and without constraining the track to the collision point

with constraint
without constraint

Muon momentum calibration

Final step is to measure the \mathbf{Z} boson mass

$$
M_{Z}=91192.0 \pm 6.4_{\text {stat }} \pm 4.0_{\text {sys }} \mathrm{MeV}
$$

Result blinded with [-50,50] MeV offset until previous steps were complete Combine all measurements into a final charged-track momentum scale

Electron momentum calibration

First step is to transfer the track calibration to the calorimeter (E/p) using W \& Z decays
Simulation:
Detailed model of bremsstrahlung and pair production upstream of the drift chamber
Parameterized calorimeter shower deposition based on GEANT4
Kotwal \& CH, NIMA 729, 25 (2013)
Tune energy loss due to material upstream of the tracker (high E/p)
Tune shower leakage due to finite calorimeter thickness (low E/p)
Correct for small non-linear calorimeter response

Electron momentum calibration

First step is to transfer the track calibration to the calorimeter (E/p) using W \& Z decays

Data corrections:

Use mean E/p to remove time dependence \& response variations in tower
Fit ratio of calorimeter energy to track momentum to correct each tower in η

Electron momentum calibration

Second step is the measurement of the \mathbf{Z} boson mass

$$
M_{Z}=91194.3 \pm 13.8_{\text {stat }} \pm 7.6_{\text {sys }} \mathrm{MeV}
$$

As a consistency check measure mass using only track information
e.g. $M_{Z}=91215.2 \pm 22.4 \mathrm{MeV}$ for non-radiative electrons $(E / p<1.1)$

Same blinding as for muon channel

Recoil momentum calibration

First step is the alignment of the calorimeters
Misalignments relative to the beam axis cause a modulation in the recoil direction Alignment performed separately for each run period using minimum-bias data

Second step is the reconstruction of the recoil

Remove towers traversed by identified leptons
Remove corresponding recoil energy in simulation using towers rotated by 90° validate using towers rotated by 180°

$$	Electron Electromagnetic $E_{T}(\mathrm{MeV})$							
	3		61	62	63	62	61	61
	2	62	61	62	69	64	62	61
		63	63	66	1227	90	64	63
			66	79	38534	176	68	64
	-1	61	61	62	178	67	61	61
	-2		61	61	63	62	61	61
	-3	60	61	61	61	61	61	61
		-3	-2	-1	0	1	2	3

Recoil momentum calibration

Third step is the calibration of the recoil response
Balance recoil against direction of p^{Z}
Check calibration using ratio of recoil magnitude to $\mathrm{p}_{\mathrm{T}} \mathrm{Z}$ along direction of p^{Z} ($\mathrm{R}_{\text {rec }}$)

Recoil momentum calibration

Fourth step is the calibration of the recoil resolution

Includes jet-like energy and angular resolution, additional dijet fraction term, and pileup

Recoil momentum validation

W boson recoil distributions validate the model

Most important is the recoil projected along the charged-lepton's momentum $\left(u_{\| \mid}\right)$

$$
m_{T} \approx 2 p_{T} \sqrt{1+u_{\|} / p_{T}} \approx 2 p_{T}+u_{\|}
$$

W boson candidates

W boson event selection

Triggers with low momentum thresholds (18 GeV) and very loose lepton id
Offline id also loose, efficiencies vary by 2% as hadronic recoil direction changes
No lepton isolation requirement in trigger or offline selection

Background suppressed by stringent hadronic recoil requirement

$$
\mathrm{U}_{\mathrm{T}}<15 \mathrm{GeV}
$$

Other kinematic requirements
Lepton and missing p_{T} in the range $30-55 \mathrm{GeV}$
Transverse mass in the range $60-100 \mathrm{GeV}$
$2.4 \mathrm{M} W \rightarrow \mu \nu$ candidates
1.8 M W $\rightarrow e \nu$ candidates

Backgrounds

Electroweak backgrounds modelled with fast simulation tuned with data and full simulation Cross-checked with full simulation tuned to data

Largest background is $Z \rightarrow \mu \mu$ with one unreconstructed muon: 7.4\% of data sample $W \rightarrow \tau \nu$ background is $\sim 1 \%$ in each channel: largest background in electron sample

Background from hadrons misreconstructed as leptons estimated using data: 0.2-0.3\%

W boson transverse momentum

Boson $p_{т}$ impacts the $p_{т}$ distributions of the decay leptons

Resbos used to generate events with non-perturbative parameters and NNLL resummation to model the region of low boson P_{T}

Z boson p_{T} used to constrain the non-perturbative parameter g_{2} and the perturbative coupling α_{s}
Resbos models W boson pt well
uncertainty estimated using DYQT and constrained with data

W boson production and decay

Parton distributions impact the measurement through lepton acceptance
Restriction in η reduces the fraction of low- p_{T} leptons

Small correction applied to update to NNPDF3.1 NNLO PDF

The set with the most W charge asymmetry measurements at the time

Uncertainty determined using a principal component analysis on the replica set
Measurement sensitive to ~15 eigenvectors
Leading 25 eigenvectors used to estimate uncertainty (3.9 MeV)
Three general NNLO PDF sets (NNPDF3.1, CT18, and MMHT14) have a range of $\pm 2.1 \mathrm{MeV}$ from mean

Photos resummation with ME corrections used to model final-state photon radiation
validated by studying the average radiation in EM towers around the charged lepton,
and with the Z mass measurement

W boson mass measurement

Result blinded by [-50,50] MeV offset until all previous steps complete

Mass measurement with p_{T}^{ℓ} distribution

Mass measurement with p_{T}^{ν} distribution

W boson mass measurement

Combination	m_{T} fit Electrons Muons	p_{T}^{ℓ} fit Electrons Muons	p_{T}^{ν} fit Electrons Muons	Value (MeV)	$\chi^{2} /$ dof \mid	Probability (\%)
m_{T}	$\checkmark \quad \checkmark$			80439.0 ± 9.8	$1.2 / 1$	28
p_{T}^{ℓ}		$\checkmark \quad \checkmark$		80421.2 ± 11.9	0.9 / 1	36
p_{T}^{ν}			$\checkmark \quad \checkmark$	80427.7 ± 13.8	$0.0 / 1$	91
$m_{T} \& p_{T}^{\ell}$	$\checkmark \quad \checkmark$	$\checkmark \quad \checkmark$		80435.4 ± 9.5	$4.8 / 3$	19
$m_{T} \& p_{T}^{\nu}$	$\checkmark \quad \checkmark$		$\checkmark \quad \checkmark$	80437.9 ± 9.7	$2.2 / 3$	53
$p_{T}^{\ell} \& p_{T}^{\nu}$		$\checkmark \quad \checkmark$	$\checkmark \quad \checkmark$	80424.1 ± 10.1	$1.1 / 3$	78
Electrons	\checkmark	\checkmark	\checkmark	80424.6 ± 13.2	$3.3 / 2$	19
Muons	\checkmark	\checkmark	\checkmark	80437.9 ± 11.0	$3.6 / 2$	17
All	$\checkmark \quad \checkmark$	$\checkmark \quad \checkmark$	$\checkmark \quad \checkmark$	80433.5 ± 9.4	$7.4 / 5$	20

Fit difference	Muon channel	Electron channel
$M_{W}\left(\ell^{+}\right)-M_{W}\left(\ell^{-}\right)$	$-7.8 \pm 18.5_{\text {stat }} \pm 12.77_{\mathrm{COT}}$	$14.7 \pm 21.3_{\text {stat }} \pm 7.7^{\mathrm{E} / \mathrm{p}}\left(0.4 \pm 21.3_{\text {stat }}\right)$
$M_{W}\left(\phi_{\ell}>0\right)-M_{W}\left(\phi_{\ell}<0\right)$	$24.4 \pm 18.5_{\text {stat }}$	$9.9 \pm 21.3_{\text {stat }} \pm 7.5_{\text {stat }}^{\mathrm{E} / \mathrm{p}}\left(-0.8 \pm 21.3_{\text {stat }}\right)$
$M_{Z}($ run $>271100)-M_{Z}($ run $<271100)$	$5.2 \pm 12.2_{\text {stat }}$	$63.2 \pm 29.9_{\text {stat }} \pm 8.2_{\text {stat }}^{\mathrm{E} / \mathrm{p}}\left(-16.0 \pm 29.9_{\text {stat }}\right)$

Summary

W boson mass an important parameter for understanding naturalness

Measurement of W boson mass with $<10 \mathrm{MeV}$ precision achieved with complete CDF data set

Result of >20 years of experience with the CDF II detector
0.01\% precision required flexibility: all experimental aspects controlled by the analysis team Reconstruction, alignment, calibration, simulation, analysis

Analysis procedures approved pre-blinding and frozen

Surprising 0.1\% deviation from SM motivates expanded study of mw measurements and procedures

Backup

CDF Components

> Muon detectors
(drift and scintillator)

Uncertainties

Source of systematic uncertainty	Electrons	m_{T} fit Muons	Common	Electrons	p_{T}^{ℓ} fit Muons	Common	Electrons	p_{T}^{ν} fit Muons	Common	
Lepton energy scale	5.8	2.1	1.8	5.8	2.1	1.8	5.8	2.1	1.8	
Lepton energy resolution	0.9	0.3	-0.3	0.9	0.3	-0.3	0.9	0.3	-0.3	
Recoil energy scale	1.8	1.8	1.8	3.5	3.5	3.5	0.7	0.7	0.7	
Recoil energy resolution	1.8	1.8	1.8	3.6	3.6	3.6	5.2	5.2	5.2	
Lepton $u_{\\| \mid}$efficiency	0.5	0.5	0	1.3	1.0	0	2.6	2.1	0	
Lepton removal	1.0	1.7	0	0	0	0	2.0	3.4	0	
Backgrounds	2.6	3.9	0	6.6	6.4	0	6.4	6.8	0	
p_{T}^{Z} model	0.7	0.7	0.7	2.3	2.3	2.3	0.9	0.9	0.9	
p_{T}^{W} / p_{T}^{Z} model	0.8	0.8	0.8	2.3	2.3	2.3	0.9	0.9	0.9	
Parton distributions	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	
QED radiation	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	
Statistical	10.3	9.2	0	10.7	9.6	0	14.5	13.1	0	
Total	13.5	11.8	5.8	16.0	14.1	7.9	18.8	17.1	7.4	

Background fractions

	Fraction		$\delta M_{W}(\mathrm{MeV})$		
Source	$(\%)$	m_{T} fit	p_{T}^{μ} fit	p_{T}^{ν} fit	
$Z / \gamma^{*} \rightarrow \mu \mu$	7.37 ± 0.10	$1.6(0.7)$	$3.6(0.3)$	$0.1(1.5)$	
$W \rightarrow \tau \nu$	0.880 ± 0.004	$0.1(0.0)$	$0.1(0.0)$	$0.1(0.0)$	
Hadronic jets	0.01 ± 0.04	$0.1(0.8)$	$-0.6(0.8)$	$2.4(0.5)$	
Decays in flight	0.20 ± 0.14	$1.3(3.1)$	$1.3(5.0)$	$-5.2(3.2)$	
Cosmic rays	0.01 ± 0.01	$0.3(0.0)$	$0.5(0.0)$	$0.3(0.3)$	
Total	8.47 ± 0.18	$2.1(3.3)$	$3.9(5.1)$	$5.7(3.6)$	

	Fraction		$\delta M_{W}(\mathrm{MeV})$		
Source	$(\%)$	m_{T} fit	p_{T}^{e} fit	p_{T}^{ν} fit	
$Z / \gamma^{*} \rightarrow e e$	0.134 ± 0.003	$0.2(0.3)$	$0.3(0.0)$	$0.0(0.6)$	
$W \rightarrow \tau \nu$	0.94 ± 0.01	$0.6(0.0)$	$0.6(0.0)$	$0.6(0.0)$	
Hadronic jets	0.34 ± 0.08	$2.2(1.2)$	$0.9(6.5)$	$6.2(-1.1)$	
Total	1.41 ± 0.08	$2.3(1.2)$	$1.1(6.5)$	$6.2(1.3)$	

Initial state LO \& NLO

W+ initial	Type	Pythia LO	Madgraph LO	Madgraph NLO
u dbar	v-v	81.7%	82.0%	82.7%
dbar u	s-s	8.9%	9.0%	8.8%
u sbar	v-s	1.6%	1.9%	1.8%
sbar u	s-s	0.3%	0.3%	0.3%
c sbar	s-s	2.9%	2.9%	-
sbar c	s-s	2.9%	2.9%	-
c dbar	s-v	0.7%	0.7%	-
dbar c	s-s	0.2%	0.2%	-
u g	v-g		-	3.7%
g dbar	g-v		-	1.8%
g u	g-s		-	0.4%
dbar g	s-g		-	0.5%
g sbar	g-s		-	0.02%
sbar g	s-g		-	0.02%

Recoil in W \& Z events

Recoil projections in W events

Recoil model parameters

Parameter	Description	Source	m_{T}	p_{T}^{ℓ}	p_{T}^{ν}
a	average response	Fig. S23			-0.2
b	response non-linearity	Fig. S23	-0.8	-2.0	0.7
Response			1.8	3.5	0.7
N_{V}	spectator interactions	Fig. S24	0.5	-3.2	3.6
$s_{\text {had }}$	sampling resolution	Fig. S24	0.3	0.3	0.8
$f_{\pi^{0}}^{4}$	EM fluctuations at low u_{T}	Fig. S25	-0.3		-1.0
$f_{\pi^{0}}^{15}$	EM fluctuations at high u_{T}	Fig. S25	-0.3		-0.2
α	angular resolution at low u_{T}	Fig. S26	1.4	0.1	2.5
β	angular resolution at intermediate u_{T}	Fig. S26	0.2	0.1	0.7
γ	angular resolution at high u_{T}	Fig. S26	0.3	0.3	0.7
f_{2}^{a}	average dijet component	Fig. S27	0.1	-1.1	0.8
f_{2}^{s}	variation of dijet component with u_{T}	Fig. S27	-0.1		-0.1
k_{ξ}	average dijet resolution	Fig. S28	-0.1	0.1	-0.3
δ_{ξ}	fluctuations in dijet resolution	Fig. S28	-0.2	0.2	-1.1
A_{ξ}	higher-order term in dijet resolution	Fig. S28	0.1	-1.0	0.7
μ_{ξ}	-"-	Fig. S28	-0.5		-0.9
ϵ_{ξ}	-"	Fig. S28	0.1	-0.2	0.4
S_{ξ}^{+}	-"	Fig. S28	0.5	-0.4	1.4
S_{ξ}^{-}	-"-	Fig. S28	-0.3		-0.5
q_{ξ}	-"-	Fig. S28	-0.2	0.0	0.2
Resolution			1.8	3.6	5.2

Z mass fits using tracker or calorimeter

Recoil reconstruction in muon channel

Electron momentum calibration

Electroweak observables at dimension 6

$$
Q_{H W B}, Q_{H D}, Q_{H \ell}^{(1)}, Q_{H \ell}^{(3)}, Q_{H q}^{(1)}, Q_{H q}^{(3)}, Q_{H e}, Q_{H u}, Q_{H d}, Q_{\ell \ell}
$$

Parameter	Input Value
\hat{m}_{Z}	91.1875 ± 0.0021
\hat{G}_{F}	$1.1663787(6) \times 10^{-5}$
$\hat{\alpha}_{e w}$	$1 / 137.035999074(94)$

Observable	Experimental Value	Ref.	SM Theoretical Value	Ref.
$\hat{m}_{Z}[\mathrm{GeV}]$	91.1875 ± 0.0021	$[19]$	-	-
$\hat{m}_{W}[\mathrm{GeV}]$	80.385 ± 0.015	$[49]$	80.365 ± 0.004	$[50]$
$\Gamma_{Z}[\mathrm{GeV}]$	2.4952 ± 0.0023	$[19]$	2.4942 ± 0.0005	$[48]$
R_{ℓ}^{0}	20.767 ± 0.025	$[19]$	20.751 ± 0.005	$[48]$
R_{c}^{0}	0.1721 ± 0.0030	$[19]$	0.17223 ± 0.00005	$[48]$
R_{b}^{0}	0.21629 ± 0.00066	$[19]$	0.21580 ± 0.00015	$[48]$
$\sigma_{h}^{0}[\mathrm{nb}]$	41.540 ± 0.037	$[19]$	41.488 ± 0.006	$[48]$
A_{FB}^{ℓ}	0.0171 ± 0.0010	$[19]$	0.01616 ± 0.00008	$[32]$
A_{FB}^{c}	0.0707 ± 0.0035	$[19]$	0.0735 ± 0.0002	$[32]$
A_{FB}^{b}	0.0992 ± 0.0016	$[19]$	0.1029 ± 0.0003	$[32]$

